Principles of Magnetic Fields

<u>Ampere's Law</u>: a current-carrying conductor produces a magnetic field surrounding it 1.

 $\oint_C \mathbf{H} \cdot d\mathbf{l} = Ni$

2. Faraday's Law: the induced voltage in a circuit is proportional to the rate of change over time of the magnetic flux through that circuit

$$e_{ind} = \frac{d\lambda}{dt} = N \; \frac{d\phi}{dt}$$

- 1. A current-carrying conductor in a magnetic field has a force induced on it (due to Lorentz Force)
 - Basis for motor action

DC Machines

 $e_a = K_a \phi_d \omega_m = K_v \omega_m$

$$e_a i_a = T_e \omega_m$$

 $T_e = K_a \phi_d i_a = K_a \phi_d (v_a - K_a \phi_d \omega_m) / R_a$

$$\omega_m = \frac{(\nu_a - i_a R_a)}{K_a \phi_d} = \frac{(\nu_a - \frac{T_e}{K_a \phi_d} R_a)}{K_a \phi_d}$$

Speed control:

Flux control or voltage control

 $E_{a} = V - I_{a} R_{a} = K_{a} \phi_{d} \omega$ $\Rightarrow \omega = (V - I_{a} R_{a})/K_{a} \phi_{d}$

Torque Control:

Armature current (Ia)

$$P_{mech} = E_a I_a = K_a \phi_d \omega I_a$$
$$=> Torque = P_{mech} / \omega = K_a \phi_d I_a$$

Torque/Power vs speed capability of motors

BLDC Motor

θ.

Solar car motor

MITSUBA Special motor for solar car

motor model :M1096D-II, M0548D-II controller model:M0896C , M0848C

Main Features

- ★ specially designed for purpose of solar car race
- ★ very high efficiency of direct drive motor (wheel in motor)
- ★ very small cogging torque brushless DC motors.(32-pole,36-slot)
- ★ The efficiency more than 95% !! (including motor controller efficiency
- ★ very high efficiency with wide range
- ★ An adapter compatible with MITSUBA M1596D motor is available (op
- ★ very light weight motor (less than 11kgs!!)
- ★ very light weight motor controller (less than 3kgs!!)
- ★ very low current consumption motor controller
- \star current control mode or manual PWM mode can be selected
- ★ User can adjust many kinds of parameters by your themselves
- \star very high efficient generating brake

● M0548- II & M1096- II specification				
System				
System name	M0548-II	М1096- П		
System outline	500W 48∨	/ 1000W 96∨		
motor				
model number	M0548D- II	M1096D-II		
dimension	ϕ 262mm × 47mm			
weight	7.4kg			
type	DC brushless motor in wheel type (direct drive type)			
nominal power	500W	1000W		
maximum power	about 2kW (see note)	about 2.5kW (see note)		
efficiency	more than 94% (including motor controller efficiency)			
nominal load rotation spe	It is preparing it.	675rpm		
rotating direction	forward:left turn (when see the wheel) / right turn optionally			
controller				
model number	M0848C	M0896C		
dimension	W143mm × D178mm × H71mm			
weight	1.6kg			
cooling operation	natural air cooling			
nominal voltage	48V	96∨		
input voltage range	18~72V	70~150V		
operation	120 degrees Square−wave control			
control mode				
current control	checking input current and automatic adjust PWM DUTY			
manual PWM control	direct control PWM Duty			
reverse switch	available (with speed limit)			
generation brake system	power adjust and voltage limiter (program by use)			

note: maximum power which depend on voltage and battery

Series Parallel Select Upgrade (1 of 2)

- Two coils can be used in parallel or series
- Must do the switching ourselves as well
- Not sure about switching when car is in motion
 - Additional \$1000

NEW OPTION!!

SERIES / PARALLEL 2times rpm or 2times torque SWITCHABLE ARRANGEMENT

parallel connection higher rpm series connection higher torque

Assuming linear isotropic material ($B = \mu H$) and ignoring 'leakage flux'

Applying Ampere's law around the mean path: $Hl_c = Ni = \mathcal{F}$ (mmf of coil)

Assuming uniform flux density in the core: $\phi = BA$

$$\phi = \mu HA = \frac{\mu A}{l_c} \mathcal{F} = \mathcal{F}/\mathcal{R}$$

Equivalently:

$$\mathcal{F} = \mathcal{R}\phi$$

where $\mathcal{R} = \frac{l_c}{\mu A}$ is the core's *reluctance* (analogous to electrical resistance).

Cross-sectional area A

Inductance

For a winding with N turns, its *flux linkage*: $\lambda = \sum_{i=1}^{N} \phi_i$, where ϕ_i is the flux linking the i^{th} turn

For a concentrated winding: $\lambda = N\phi$

The *inductance* L relates the flux linkage λ to winding current *i*:

$$\phi = \frac{\lambda}{N} = \frac{\mathcal{F}}{\mathcal{R}} = \frac{Ni}{\mathcal{R}} \rightarrow \qquad L = \frac{\lambda}{i} = \frac{N^2}{\mathcal{R}}$$

In multi-winding magnetic circuits, *mutual inductances* relate the flux in one winding to the current in another

Energy Approach to Electromechanical Energy Conversion

Energy Approach

Neglecting Losses,

$$dW_m/dt = \int i \, d\lambda - \int f \, dx$$
$$dW_m = W_m{}^b - W_m{}^a$$
$$= \int_a^b i \, d\lambda - f \, dx$$

State variables, λ, x

$$dW_m(\lambda, x) = \frac{\partial W_m(\lambda, x)}{\partial \lambda} d\lambda + \frac{\partial W_m(\lambda, x)}{\partial x} dx$$
$$dW_m = \int i \, d\lambda - f \, dx$$
$$f = -\frac{\partial W_m(\lambda, x)}{\partial x}$$

For linear systems,

$$W_m = \int_0^\lambda \frac{1}{L(x)} \lambda d\lambda = \frac{1}{2} \frac{\lambda^2}{L(x)}$$

$$f^e = -\frac{1}{2}\lambda^2 \frac{\partial}{\partial x} \frac{1}{L(x)}$$

$$f^e = -\frac{1}{2}i^2\frac{\partial}{\partial x}L(x)$$

A) Phase A energized Rotor at holding position

C) Phase B energized Rotor at holding position

B) Phase B energizedBent magnetic flux causesthe rotor to be pulled towardsB phase pole on stator

D) Phase C energized Bent magnetic flux causes the rotor to be pulled towards C phase pole on stator

E) Phase C energized Rotor at holding position

F) Phase A energized Bent magnetic flux causes the rotor to be pulled towards A phase pole on stator

Where T is the length of one step (s)

Electrical Machine Design

- Electrical machine design is a mix of art & science, in contrast to modeling and analysis
- Many design parameters and trade-offs across different domains (electromagnetics, mechanical, thermal, controls, materials, economics, etc.)
- No unique solution, and difficult to set up as an 'inverse problem' without major simplifications and narrowing down of the design space
- Optimal design depends heavily on the emphasis on the overall objectives
- Typically, an iterative process: design -> analysis -> design refinement -> analysis,...
- Start with design goals many: cost, efficiency, size, etc.
- Initial sizing to generate a "concept" and down-select a configuration based on approximate performance prediction.
- Useful to start with a low fidelity assessment and an approach for a quick sizing, to get things going. This may be where your expertise in machine design is most impactful.
- The remaining steps can be done somewhat mechanically if equipped with adequate analysis tools and sufficient time. An optimization tool may also help.
 - Electromagnetics design to size windings, laminations, magnets
 - o Thermal design to keep temperature/loss within limits and specifications
 - o Mechanical design to ensure proper rotor construction (specifically high-speed machines)

The materials used for the machine and other features like cooling impose design limitations.

- Flux density: Saturation of iron poses a limitation on account of increased core loss and excessive excitation required to establish a desired value of flux. It also introduces harmonics.
- **Current density:** Higher current density reduces the volume of copper but increases losses
- **Temperature:** limitation on account of possible damage to insulation and other materials temperature sensitive materials (PM, composites etc)
- **Voltage stresses**: limitation on account of breakdown by excessive voltage gradient, mechanical forces or heat.
- **Mechanical stresses:** poses a limitation particularly in case of large and high speed machines.

Also need to consider additional requirements from customer, manufacturer or standards – efficiency, dynamic performance, fault tolerance, etc

http://www.electric-vehiclenews.com

Materials

- Lamination steels:
 - Cold-rolled steel: cheap, for mass production, high loss
 - Electrical (silicon) steel: Mxx grades, balance performance (loss) with cost
 - Cobalt-iron steel: Permendur, Hiperco, Vacoflux, Vacodur, ... high cost (10 – 100x electrical steel), low loss, highest flux density, used in many high performance applications
 - All lamination steels need to be heat-treated to achieved desired properties
 -> trade-off between magnetic (core loss) and mechanical performance (strength)
- Conductors / magnet wire:
 - Copper unless temperatures are beyond what copper can handle (i.e., 300°C +)
 - More important choice is magnet wire insulation (material, thickness). Choice depends on expected temperature and voltage levels
- Insulation:
 - Nomex papers (10 20 mil) to provide phase-phase and phase-ground (lamination stack) insulation
 - Electrical-grade resin sprayed onto the lamination stacks (3 5 mil thick)
 - High-temperature ceramic insulators in extreme temperatures
- Permanent magnets:
 - Neodymium magnets provide highest energy/flux density, but top out around 150°C
 - Samarium Cobalt magnets have are much more temperature stable, from cryogenic to 350°C, but have lower energy density

Soft magnetic materials have relatively narrow hysteresis loop and a steep magnetization curve. Properties of good soft magnetic material for machine design:

- High magnetic permeability
- High saturation induction
- Narrow hysteresis loop or low coercivity to minimize hysteresis loss
- High electrical resistivity to minimize eddy current loss
- A high curie point

Hard or permanent magnetic materials have wide hysteresis loop. Properties of good hard magnetic material for machine design:

High energy density, low temperature sensitivity, 'resistant' to demagnetization, high electrical resistivity,

Soft Magnetic Material

Hard Magnetic Materials

Desirable properties a good conductor should possess are listed below.

- Low value of resistivity or high conductivity
- Low value of temperature coefficient of resistance
- Highly malleable and ductile, High tensile strength
- High resistance to corrosion
- Allow brazing, soldering or welding so that the joints are reliable
- Low cost

	Copper	Aluminum
Resistivity at 200°C	0.0172 ohm / m/ mm ²	0.0269 ohm/m/mm ²
Conductivity at 200°C	58.14 x 106S/m	37.2 x 106S/m
Density at 200°C	8933 kg/m ³	2689.9 kg/m3
Temperature coefficient (0-100°C)	0.393 % per °C	0.4 % per °C
Coefficient of linear expansion (0-100°C)	16.8x10-6 per °C	23.5x10-6 per oC
Tensile strength	25 to 40 kg / mm ²	10 to 18 kg / mm ²
Mechanical property	highly malleable and ductile	not as good
Thermal conductivity (0-100°C)	599 W/m ºC	238 W/m ºC
Joining	easily soldered	

Insulating Materials

An ideal insulation material should possess the following properties:

- high dielectric strength
- withstand high temperature
- relatively high thermal conductivity
- low dissipation due to conduction or dielectric losses
- flexible and mechanically compliant
- withstand mechanical stresses over many cycles
- withstand vibration, abrasion, bending
- be inert to environment (moisture, oxidation, etc)

Insulation class		Maximum operating	Typical materials
Previous	Present	temperature in °C	
Y		90	Cotton, silk, paper, wood, cellulose, fiber etc., without impregnation or oil immersed
А	А	105	The material of class Y impregnated with natural resins, cellulose esters, insulating oils etc., and also laminated wood, varnished paper etc.
Е	Е	120	Synthetic resin enamels of vinyl acetate or nylon tapes, cotton and paper laminates with formaldehyde bonding etc.,
В	В	130	Mica, glass fiber, asbestos etc., with suitable bonding substances, built up mica, glass fiber and asbestos laminates.
F	F	155	The materials of Class B with more thermal resistance bonding materials
Н	Н	180	Glass fiber and asbestos materials and built up mica with appropriate silicone resins
С	С	>180	Mica, ceramics, glass, quartz and asbestos with binders or resins of super thermal stability.

Thermal Management

FIGURE 8.23

Open ventilating cooling system with sucked air forcing through stator cooling channels. In this design, a rotor fan is mounted at the nondrive end.

HGURE 8.31 Cooling air is blown over the totally enclosed motor surface along axial plate fins by an external fan mounted on the shaft. No internal fan is used.

HGURE 8.27 Cooling channels formed between stator winding coils (U.S. Patent 6,713,927) [8.34]. (Courtesy of the U.S. Patent and Trademark Office, Alexandria, VA.)

Cooling Systems

Using the IPM hairpin machine we will compare three different cooling methods

- 1) Water jacket, e.g. Nissan Leaf, BMW i3
- Water jacket + Internal Air, e.g. Zytek traction machine, BMW
 2225xe series
- 3) Oil spray cooling, e.g. Toyota Prius

