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ECE 361: Lecture 8: Energy-Efficient Communication – Part II

In Lecture Note 7, we considered three different forms of M -ary orthogonal communication schemes. In all
three systems, the receiver is confronted by M independent Gaussian random variables Y0, Y1, . . . , Yn−1

with common variance σ2. One of these random variables has a large mean
√
Es, all others have mean 0,

and it is the receiver’s job to decide which of the random variables is the one with the large mean. In this
Lecture, we show that the receiver can make such a decision with very high reliability, and that M -ary
orthogonal communication schemes are energy efficient : provided that Eb, the energy transmitted per bit, is
larger than 2σ2 ln 2, the error probability can be made as small as desired by increasing M . Of course, as
noted previously, the data rate (log2M)/M bits per channel use decreases rapidly towards 0 as M increases,
and so the schemes are not rate efficient.

8.1. Error Probabilities in M-ary Orthogonal Signaling

The receiver in an M -ary orthogonal communication schemes has available to it M random variables Y0,
Y1, . . . , YM−1. Given that signal si was transmitted, these are conditionally independent Gaussian random
variables with common variance σ2 and with means E[Yi] =

√
Es, E[Yj ] = 0 for j 6= i. It should be intuitively

obvious1 that if the largest of the observationsY0, Y1, . . . , YM−1 is Yj , then the receiver decides that sj
was the transmitted signal. If Yi is the largest observation, then the receiver decision (that si was the
transmitted signal) is correct. What is the probability of this occurring?

8.1.1. The Probability of a Correct Decision

Let C denote the event that the receiver decision is correct. Since we are assuming that si is the transmitted
signal, we have that

P (C | si transmitted) = P
{
Yi > max{Y0,Y1, . . . ,Yi−1,Yi+1, . . . ,YM−1}

}
To calculate this probability, let us suppose that Yi = α. Then,

P (C | si transmitted,Yi = α) = P{Y0 < α,Y1 < α, . . . ,Yi−1 < α,Yi+1 < α, . . . ,YM−1 < α}
= P{Y0 < α}P{Y1 < α} · · ·P{Yi−1 < α}P{Yi+1 < α} · · ·P{YM−1 < α}

=
[
Φ(α/σ)

]M−1

where we have used the independence of the Y’s and the fact that they all are N (0, σ2) random variables.
The law of total probability tells us that we can remove the conditioning on the value of Yi by multiplying
by the pdf σ−1φ((α −

√
Es)/σ) of Yi and integrating with respect to α. In fact, the symmetry of the

problem suggests that P (C | si transmitted) is the same for all choices of i and so P (C) is the same as
P (C | si transmitted). Thus we have (after making a change of variable x = α/σ) that

P (C) =
∫ ∞
−∞

[
Φ
(α
σ

)]M−1 1
σ
φ

(
α−
√
Es

σ

)
dα =

∫ ∞
−∞

[Φ(x)]M−1
φ(x− µ) dx (8.1)

where µ =
√
Es/σ2 is a measure of the signal to noise ratio SNR. Except when M = 2, this integral must

be evaluated numerically. Fortunately, since φ(·) is a rapidly decreasing function of its argument, it is not
too hard to evaluate P (C) quite accurately (e.g. to four or five significant figures, that is, to within ±0.01%
or better accuracy) via numerical integration.

1. . . and if it is not, work out the details and prove it for yourself!



8.1.2. The Probability of Error

From (8.1), it follows readily that the error probability of an M -ary orthogonal communication scheme is

P (E) = 1− P (C) = 1−
∫ ∞
−∞

[Φ(x)]M−1
φ(x− µ) dx. (8.2)

This equation is much beloved of textbook writers, but is an absolutely terrible way of computing P (E)!
We are interested in small values of P (E) and taking the difference of two nearly equal numbers to find
P (E) is not a good idea. The “answer” is likely to be mostly round-off errors encountered in the numerical
integration routines used in evaluating (8.1). It is far better to develop a different integral that will allow us
to find P (E) directly. Integrating the right side of (8.2) by parts, we have

P (E) = 1−
∫ ∞
−∞

[Φ(x)]M−1
φ(x− µ) dx

= 1−
[
[Φ(x)]M−1 Φ(x− µ)

∣∣∣∞
−∞

+
∫ ∞
−∞

(M − 1) [Φ(x)]M−2
φ(x)Φ(x− µ) dx

and since Φ(x) and Φ(x− µ) converge to 1 and 0 respectively as x→∞ and x→ −∞, we have that

P (E) = (M − 1)
∫ ∞
−∞

[Φ(x)]M−2 Φ(x− µ)φ(x) dx where µ =
√
Es/σ2. (8.3)

The integral in (8.3) also requires numerical evaluation but yields P (E) directly instead of as the difference
of two nearly equal numbers. Next, note that symmetry suggests that when an error occurs, any of the other
M −1 signals is equally likely to be chosen by the receiver, and thus the probability that the receiver decides
that sj was transmitted when si was in fact the transmitted signal is the integral shown in (8.3). This can
also be obtained more directly. The receiver decides that sj was the transmitted signal exactly when Yj is
the largest observation. Conditioned on Yj = α, the probability that all the other observations are smaller
is just [Φ(α/σ)]M−2 Φ((α −

√
Es)/σ). The unconditional probability is obtained by multiplying by the pdf

σ−1φ(α/σ) of Yj and integrating, and with the change of variable x = α/σ (just as before!), we get

P{receiver decides sj transmitted | si transmitted} =
∫ ∞
−∞

[Φ(x)]M−2 Φ(x− µ)φ(x) dx =
1

M − 1
P (E).

(8.4)
Thus, when an error occurs, the receiver decision is equally likely to be any of the other M − 1 signals.

8.1.3. The Union Bound on Error Probability

Instead of doing a numerical integration, we can massage (8.3) to get an easily computable upper bound on
P (E) that is generally called the union bound on error probability. First, let us replace [Φ(x)]M−2

< 1 in
(8.3) by 1 to get that

P (E) < (M − 1)
∫ ∞
−∞

φ(x)Φ(x− µ) dx. (8.5)

Now, if X ∼ N (0, 1) and W ∼ N (µ, 1) are independent random variables, then P{W < X | X = x} = Φ(x−µ)
and thus P{W < X} can be obtained by multipliying P{W < X | X = x} = Φ(x − µ) by the pdf of X and
integrating. Thus, the integral in (8.5) can be recognized as P{W < X}. But, W − X ∼ N (µ, 2) and so
P{W < X} = P{W− X < 0} = Q(µ/

√
2). Substituting into (8.5), we get

P (E) < (M − 1)Q(µ/
√

2) = (M − 1)Q(
√
Es/2σ2). (8.6)

The reason that (8.6) is called the union bound is that if we define M−1 events Aj = {Yj > Yi}, j 6= i, then
we have that P (Aj) = P{Yj > Yi} = P{Yj −Yi > 0} = Q(

√
Es/2σ2) since Yj −Yi ∼ N (−

√
Es, 2σ2). But,

an error occurs if and only if at least one of the events Aj occurs, that is, E =
⋃
j Aj . But the probability
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of a union is no larger than the sum of the probabilities: P (E) ≤
∑
j P (Aj) with equality exactly when

P (Aj ∩Ak) = 0 for all j 6= k, which does not hold in this instance. Therefore,

P (E) <
∑
j

P (Aj) = (M − 1)Q(
√
Es/2σ2)

as claimed in (8.6). In fact, the union bound is typically derived using the second argument presented above.
Numerically, the union bound on P (E) is very tight for large SNR. But at low SNR, the bound can be much
larger than the actual value of P (E).

A tighter result than the union bound, which we present without a proof, is

P (E) < 1−
[
1−Q(

√
Es/2σ2)

]M−1

. (8.7)

Of course, this seems to be taking the difference of two nearly equal numbers, a practice that we have
excoriated above, but expanding out the right side of (8.7) via the binomial theorem gives

P (E) < (M − 1)Q(
√
Es/2σ2)−

(
M − 1

2

)[
Q(
√
Es/2σ2)

]2
+
(
M − 1

3

)[
Q(
√
Es/2σ2)

]3
− · · ·

where the first term is the union bound, the first two terms give a lower bound on the right side of (8.7), the
first three give an upper bound on the right side of (8.7), and so on. Note also that if we write Φ(x) = 1−Q(x)
in (8.2) and expand via the binomial theorem, we get the exact value of P (E) as

P (E) = (M − 1)
∫ ∞
−∞

φ(x− µ)Q(x) dx−
(
M − 1

2

)∫ ∞
−∞

φ(x− µ)[Q(x)]2 dx+ · · ·

where the first integral can be shown to have value Q(µ/
√

2) via the same argument that we used in getting
to (8.6) from (8.5), that is, the first term above is the union bound.

8.1.4. Bit error probabilities

M -ary orthogonal signaling communicates log2M bits in M channel uses. Let m = dlog2Me so that the
messages can be represented as M of the 2m binary m-bit vectors. Note that M > 2m−1. Now suppose
that a0 of these M vectors have a 0 in the k-th position and a1 = M − a0 have a 1 in the k-th position.
Typically, a0 ≈ a1 ≈ M/2. (Why?) What is the probability of a bit error in the k-th position? Well,
if a message with a 0 in the k-th position is transmitted, then a bit error occurs in the k-th position if
the receiver chooses any of the a1 messages that have a 1 in the k-th position. According to (8.4), this has
probability a1P (E)/(M−1) of occurring. Similarly, if a message with a 1 in the k-th position is transmitted,
the probability of a bit error in the k-th position is a0P (E)/(M − 1). Now, messages with a 0 in the k-th
position are transmitted with probability a0/M while messages with a 1 in the k-th position are transmitted
with probability a1/M = 1− a0/M . Thus, the probability of a bit error in the k-th position is

Pb,k =
a1P (E)
M − 1

× a0

M
+
a0P (E)
M − 1

× a1

M
=

P (E)
M(M − 1)

× 2a0(M − a0) ≤ M/2
M − 1

P (E)

since 2a0(M − a0) has maximum value M2/2 when a0 = M − a0 = M/2. Thus, in each position, the bit
error probability is, at worst, slightly more than one-half of the symbol error probability P (E). If M = 2m

where m is an integer, then Pb,k = (2m−1/(2m − 1))P (E) for all m bit positions.

8.2. Energy Efficiency of M-ary Orthogonal Communications

Throughout this section, we assume that M = 2m where m is an integer. With 2m-ary orthogonal commu-
nication, we can transmit m bits over 2m channel uses with a total energy Es with probability of error P (E)
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given by (8.3). The energy per bit is Eb = Es/m. Now, the union bound (8.6) together with the standard
result Q(x) ≤ 1

2 exp(−x2/2) for x ≥ 0 gives us that

P (E) < (M − 1)Q(
√
Es/2σ2) =

2m − 1
2

exp(−mEb/4σ2) < 2m exp(−mEb/4σ2).

It follows that P (E) < exp(−m(Eb/4σ2 − ln 2)) where the argument of the exponential is negative as long
as Eb > 4σ2 ln 2. Thus, if the energy per bit is larger than 4σ2 ln 2, we can make P (E) as small as we like by
increasing the value of m. In other words, M -ary orthogonal communication schemes are energy efficient.
Provided that Eb, the received energy per bit, is larger than the threshold value 4σ2 ln 2, we can make P (E)
as small as we like. This is in contrast to repetition coding where small P (E) is achieved at the expense of
(very rapidly) increasing Eb.
It turns out that the minimum energy requirement stated in the previous paragraph is excessive, and can
be attributed to the use of the union bound on P (E) and the use of the weak bound Q(x) ≤ 1

2 exp(−x2/2),
which, as we have noted before, is not tight for large x. In fact, a careful analysis of the behavior of P (C)
as given in (8.1) shows that bit energy larger that only 2σ2 ln 2 suffices to drive P (E) to as small a value as
we like. The outline of this argument is as follows.

Let us write P (C) =
∫ ∞
−∞

[Φ(x)]M−1
φ(x − µ) dx =

∫ ∞
−∞

[Φ(x+ µ)]M−1
φ(x) dx where µ =

√
mEb/σ2.

Writing β = Eb/(2σ2 ln 2) so that µ =
√

2mβ ln 2 =
√

2β
√

lnM , we have

P (C) =
∫ ∞
−∞

[
Φ(x+

√
2β
√

lnM)
]M−1

φ(x) dx

It turns out that lim
M→∞

[
Φ(x+

√
2β
√

lnM)
]M−1

=

{
1, if β > 1,
0, if β < 1,

and consequently we have that

lim
M→∞

P (C) =

{
1, if Eb > 2σ2 ln 2,
0, if Eb < 2σ2 ln 2.

Equivalently, lim
M→∞

P (E) =

{
0, if Eb > 2σ2 ln 2,
1, if Eb < 2σ2 ln 2.

This result not only shows that the threshold on Eb is one-half of what we got from the union bound argument,
but also shows the negative result that if Eb < 2σ2 ln 2, then matters only get worse as M (or equivalently,
m) is increased since P (E) increases to 1 rather than decreasing to 0. Since the bit error probability is
slightly more than 1

2P (E), the bit error probability converges to 1
2 when Eb < 2σ2 ln 2. Thus, 2σ2 ln 2 is the

dividing line between good and bad performance of M -ary orthogonal communication systems.

The rest of this document is not required reading for this course.

The key to deriving all these interesting results is the limit of
[
Φ(x+

√
2β
√

lnM)
]M−1

. Let us look at

lim
M→∞

ln
[
Φ(x+

√
2β
√

lnM)
]M−1

= lim
M→∞

ln Φ(x+
√

2β
√

lnM)
(M − 1)−1

which is of the indeterminate form 0/0 (note that the argument of Φ(·) goes to ∞). Treating M as a real
number, applying L’Hôpital’s rule, and ignoring factors that we know are converging to 1, it can be shown
that

lim
M→∞

ln Φ(x+
√

2β
√

lnM)
(M − 1)−1

= lim
M→∞

(M − 1)2

M1+β
(lnM)−1/2 1

exp(x
√

2β
√

lnM)
.

(Hey, nobody said this was easy stuff!) Further careful analysis of the cases β > 1 and β < 1 shows that the

limit of ln
[
Φ(x+

√
2β
√

lnM)
]M−1

is 0 or −∞ according as β > 1 or β < 1, and so
[
Φ(x+

√
2β
√

lnM)
]M−1

converges to 1 or 0 according as β > 1 or β < 1.
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