ECE 350 Lecture Notes — Summer 10/11 - Sp 23 Erhan Kudeki

1 Overview, Maxwell’s equations

e ECE 329 introduced Maxwell’s equations and examined their cir-
cuit implications (inductance, capacitance) and TEM plane-wave solu-
tions in homogeneous media and on “two-wire” transmission lines.

e In ECE 350 we continue our study of the solutions and applications
of Maxwell’s equations with a focus on:

1. Radiation of spherical TEM waves from practical compact antennas (e.g.,
used in cell phones and wireless links).

Propagation, reflection, and interference of TEM waves in 3D geometries.
Antenna reception and link budgets in communication applications.
Dispersion effects in frequency dependent propagation media.

Guided waves in TEM, TE, and TM modes.

Field fluctuations in enclosed cavities -+ thermal noise in fields and circuits
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ECE 350 completes the introductory description of electromagnetic (EM)
effects in our curriculum and prepares the student for specialization courses

in EM (ECE 447, 452, 453, 454, 455, 457, 458, etc.) and applications.

Maxwell’s equations:
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Review:
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Maxwell’s Equations:

V-B = OaB

VXE - _a—ta
D

VxH = J‘I‘E

V:-D =p Gauss’s law

Faraday’s law

Ampere’s law
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icroscopic applications:

e p and J describe compact (pointlike)
sources,

e D=¢FEand B=pyH
acroscopic applications:

e p and J describe smooth sources com-
posed of free charge carriers,

e D=cE and B=pH

specified in the in frequency domain
with w dependent

— permattivity € and

— permeability . -

e Ficlds E and B determine how a “test charge” ¢ with mass m, position

r, and velocity v =1 =

and Newton’s 2nd law

dr
dt

F=¢(E+vxB)

L accelerates in accordance with Lorentz

force
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Maxwell’s Equations:
V-D =p
V:-B =0 5
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VXE = ——
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D
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e Note: the same units for
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Boundary Conditions:

A

n[ D7 =
n-[BT-B7] = 0

n><[EjL E] =0

nx H —H™] = J,

where n 1s a unit normal to the
boundary surface pointing from —
to + side.
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— Displacement D and surface charge density ps,

— Magnetic field intensity H and surface current density J.

e In right-handed Cartesian coordinates div, grad, and curl are pro-

duced by applying the del operator

R N B

A

V =

+i—

<8x’8y’8z) _x%er@_y 0z

on vector or scalar fields as appropriate.
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Units in mksA sys-
tem:

® ¢[=]C=sA,
® p[=|C/m?,
® J[—|A/m?

® E[-|N/C—V/m,

® D[-|C/m’[]ps,

® B|=|V.s/m?
=Wb/m?=T,

® H[-|A/m[-]J;

where

C,N,V,Wh,and T

are abbreviations for
Coulombs, Newtons, Volts,
Webers, and Teslas,
respectively.

Charge ¢ is quantized in units of
e =1.602 x 10712 C,

a relativistic invariant.



e Vectors and vector functions can be expressed in terms of mutually

orthogonal unit vectors z, , and Z as in
= (z,y,2) = x2+yy+2z and E=(E,, E, E.) =

where

— |r| = /22 +y?+ 22 and |E| = \/Eg + B2 + B2 etc., are vector
magnitudes,

tc., are associated unit vectors, with

~

AT -~ _ E
—r=Xand K = =& e
| |E]

/Dot products: /Cross products:

~
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n a right-handed system.

A~

e t-y=a-2=9-2=0.
Cross product A x B is a vector with a
magnitude the product of |A| and |B| and
the sine of angle 6 between A and B and a
direction orthogonal to A and B in a right-
handed sense.

Dot product A - B is a scalar which is the
product of |A| and |B| and the cosine of an-
gle 0 between A and B.

Dot product is zero when angle 6 is 90°, as

the case of z and ¥, etc. Cross product is zero when the vectors cross

multiplied are collinear (# = 0°) or anti-

\@ear (0 = 180°).

E.a+E,y+E.z etc.,

= (2,9, 2)
=ar +yy+ 22

Y

UNIT VECTORS AND A POSITION
VECTOR IN RIGHT-HANDED
CARETESIAN COORDINATES

Right handed con-

vention: cross product vec-
tor points in the direction indi-
cated by the thumb of your right
hand when you rotate your fin-
gers from vector A toward vector
B through angle # you decide to
use.

A -B =|A||B|cost
DOT PRODUCT:product of
projected vector lengths

A xB=

CROSS PRODUCT:
perpendicular area vector of
the parallelogram formed

by co-planar vectors

|A||B|sinfa x n

right-handed



Example 1: A particle with charge ¢ = 1 C passing through the origin r = (z,y, z) = 0 of the lab frame is observed

to accelerate with forces
when the velocity of the particle is
R . m
V1:O, V2:2y7 V3:3Z_7
S

in turns. Use the Lorentz force equation
F =¢(E+v xB)

to determine the fields E and B at the origin.

Solution: Using the Lorentz force formula first with F = F; and v =v;, we note that
2& = (1)(E+ 0 x B),

which implies that

N A%
E=2—-=2z—.
xC *m
Next, we use
F F
vxB=——-E=— -2z
q q

with Fo = 2% — 62 and vy = 27, as well as E = 22 V/m, to obtain
20 xB=-6z2 = ygxB=-3%
likewise, with F3 = 22 + 9y and vs = 32,
3Z2xB=9y = ZxB=3g.
Substitute B = B,& + B,y + B.Z in above relations to obtain
§ X (ByZ + Byy + B,2) = —By2+ B,& = —3Z

and
2 x (Bg& + Byy + B.2) = B,y — Byt = 33.

Matching the coefficients of Z, ¢, and Z in each of these relations we find that

Wh
BI:3—27 and By:BZ:O
m
Hence, vector
B W
m

Having three mnon-collinear
force measurements F; cor-
responding to three distinct
test particle velocities v; is
sufficient to determine the
fields E and B at any location
in space produced by distant
sources as illustrated by this
example.

zZ
A
Y
V1:O
> - > T
F1—2$
zZ
A
Y
V2:2g
> T
Fo =21 —-62
zZ
A
Y

V3 =432 Fs =23+ 99




Conservation laws

e In HW1 you are asked to derive the continuity equation

dp
i . J =
8t+v 0

by taking the divergence of Ampere’s Law and combining it with Gauss’
Law.

— This equation expresses the conservation of electrical charge by
putting a constraint on charge density p and current density J as
it was first explained in ECE 329 (this is just a review, recall).

e Another conservation law derived in ECE 329 from Maxwell’s equations
was Poynting Theorem, namely

ow
——4+V-S=_-J-E
or ’
where ] ]
w = §€OE - B+ §,uOH -H EM energy density,

S = E x H Poynting vector,

—J - E power produced per unit volume,

— expressing the conservation of electromagnetic energy.
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e All conservation laws found in nature can be expressed mathematically
in the forms given above in terms of a time-derivative of the volumetric
density of the conserved quantity, the divergence of the flux of the
conserved quantity (the so-called transport term), and a production
term on the right (zero in case of charge conservation).

e The above conservation laws account for the increase/decrease of the
conserved quantity density in terms of local transport and production
effects. Hence charge conservation, for instance, is a local conservation
principle.

— If charge density decreases at a location, it will increase at a neigh-
boring location because of local transport between the locations
— charge cannot disappear in one volume and appear simultane-
ously in another volume (satisfying a so-called global conservation
principle) without having traveled between the volumes.

— All conservation laws observed in nature are local (as opposed to
global) in the sense just described — the proof for this very broad
statement can be based on the principle of relativity!.

!Note that if charge could travel between the volumes with an infinite speed, then “global conservation”
as opposed to “local conservation” could have been a viable idea — however no object can travel faster
than light according to the principle of relativity and thus conservation laws have to be necessarily local
and have mathematical expressions similar to those given in the continuity equation. A more general (but
simple) proof of the local nature of all conservation laws (based on special relativity) is given by Feynman
(see “The character of physical law”, 1965, MIT Press).
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2 Static fields and potentials

Static fields
E=E(r), D=D(r), B=B(r), H=H(r)
independent of the time variable ¢ are produced by static source distributions
p=p(r) and J=J(r)

which only depend on position vector r = (x,y, z). In case of static fields
Maxwell’s equations simplify and decouple as

Gime-dependent: A Electrostatics: (curl-free)
V-D = p > _ V-D =
V-B =0 B VxE =0
VxE = o D = ¢E
oD : : .
VxH = J+ e Magnetostatics: (divergence-free, solenoidal)
N J V-B =0
VxH =]
\_ B = u,H




Important vector identities:
e V x (VV)=0
o V- (V X A) =0

e VXV XxA=V(V-A)—V2A.

Electrostatics: (curl-free)

V-D =p
VXE =0
D = ¢ E

Since all curl-free fields can be expressed in
terms of a scalar gradient, we choose

E=-VV

where

V=V(z,y,z2)
\s called electrostatic potential.

~

Magnetostatics: (divergence-free)

V-B =0
VxH =1J
B = uH

Since all divergence-free fields can be ex-
pressed in terms of a curl, we choose

B=VxA

where

A=A(x,y,2)

\s called vector potential.




-

Electrostatics: (curl-free)

V-D =p
VxE =0
D = ¢ E
such that
E=-VV.

Electrostatic potential
V=V(x,y,z2)

signifies the kinetic energy available (i.e.,
stored potential energy) — total energy be-
ing %mv - v + gV — per unit charge in a
static field measured from a convenient refer-

\ence point (ground). )

4 N

Magnetostatics: (divergence-free)

V-B =0
VxH = 1]
B = uH
such that
B=VxA.

[f we apply the constraint V-A = 0 — known
as Coulomb gauge and discussed in more
detail next lecture — then the vector po-

tential
A=A(z,y,2)

can be interpreted as kinetic momentum mv
available — total (canonical) momentum be-
ing mv + gA — per unit charge in a static
field.

- /

e In general, given V' and A, it is easy to compute E and B.

e How do we get V and A from p and J? DBefore addressing this

question in full generality, let’s review the electric field E and the elec-

trostatic potential V' of a stationary point charge located at the origin.



Coulomb’s law specifies the electric field of a stationary charge () at the

Q

- dre,|r|?

origin as

E(r)

as a function of position vector r = (x,y, z) with a magnitude

Force exerted by Q on q:

: F =qE

r| =r = /22 + 132+ 22 and direction unit vector 7 = —
-

with electric field
e This Coulomb field E(r) will exert a force F = ¢E(r) on any stationary g @
dre,|r|?

“test charge” ¢ brought within distance r of @) (see margin).

With multiple Q’s superpose
multiple E’s

e The associated electrostatic potential is

Q

- 47e,|r]

V(r)

with an implied ground for |r| — oo.
Verification: this can be done in two ways,
1. by computing —VV = E(r), or
2. by computing the line integral [~ E - dl = V/(r) along any path.

In HW 1 we will ask you to verify the potential of the point charge
using both methods.



Poisson’s equations:

-

Electrostatics: Since
VxE=0 = E=-VV,
we have
D=¢E and V-D=p

implying

V(e VV)=p =VV=_1"

N 3

Magnetostatics: Since

V-B=0 = B=VXxA,
we have

B=uyH and VxH=J
implying
Vx(u,'VxA) =T =VA=—pu,J

after using

V-A=0 (Coulomb gauge)

in the expansion of

\\ VXVXxA=V(V-A)-V’A )

e We can get V' and A from p and J by solving the Poisson’s equations
V= -2 and VA = — lhod

€o

0*  09* 0

02 i Oy? i 072

5

is Laplacian operator.



The solution of electrostatic Poisson’s equation

vy = -2

€o
with an arbitrary p(r) existing over any finite region in space can be obtained

V(r) = / p(r') Br!

drte,r — 1|

as

where d®r’ = da/dy’dz’ and the 3D volume integral on the right over the
primed coordinates is performed over the entire region where the charge
density is non-zero (see margin).

e Verification: The solution above can be verified by combining a num-

ber of results we have seen earlier on:

1. Electric potential V(r) of a point charge @ at the origin is
Q

B dre,|r|

V(r)

Clearly, this singular result is a solution of Poisson’s equation
above for a charge density input of

p(r) = Qi(r).

(a) Using ECE 210-like terminology and notation, the above re-
sult can be represented as

1
4me,|r|

d(r) — | Poisson’s Eqn| —

The general solution
Viz,y,2)

is obtained by performing a
3D volume integral of
p(@',y', )
47T€o|(x7 Y, Z) - (xla y/7 Z/)|

over the primed coordinates.
In abbreviated notation

&ér' = do'dy'd?

denotes an infinitesimal vol-
ume of the primed coordinate
system.



identifying the output on the right as a 3D “impulse response”

of the linear and shift-invariant (LSI) system represented

by the Poisson’s equation.

Because of shift-invariance, we have

é(r—r') —

1

Poisson’s Eqn| —

dre,|r —r!|

meaning that a shifted impulse causes a shifted impulse re-

sponse.

The shifted impulse response is usually called “Green’s
function” G(r,r’) in EM theory.

Because of linearity, we are allowed to use superpositioning

arguments like

/p(r')é(r—r’)d?’r’ = p(r) — |Poisson’s Eqn

1
s /p(rl)47r60|r — r/|d3r’ = V(r),

which concludes our verification. Note how we made use of

the sifting property of the impulse (from ECE 210) in above

calculation.



Solutions of Poisson’s equations:

zZ

p(r’)

implies a general solution

Vi) = / p(r')

dme,lr —

N

|

3

/

d°r’.

N/

Magnetostatics:
VZA = —p,J

implies a general solution

4tlr — 1/

AN

Alr) = / pod (r')

4t

/

These results indicate that potentials

V(r)

and A(r)

are appropriately weighted sums of

p(r)

and J(r)

in convolution-like 3D space integrals.

8



Quasi-static approximation:

A
z ) p(r',t)
r T

Y4

Electro-quasi-statics: Magneto-quasi-statics:
E~-VV B~V xA
:uO r, 3./
! ¢ Ar,t) =~ / ————~d°’r
V(r,t) ~ / p(r7 ) d?)rl ( ) 47-‘-‘1._1.1‘
4re,|r — 1/ _
\for slowly varying J(r, ).
\or slowly varying p(r, ¢). -

Validity of these quasi-static results requires that
L
T>—
c

where T is the period of the highest frequency in source functions p(r,t) and
J(r,t), while L is the size of the region around the source region where quasi-
static approximation is acceptable. This condition cannot be satisfied as
L — o0, in which case the required “fix” is to replace the potential functions
above by their “retarded potential” counterparts — see next lecture.

9




3 Lorenz gauge and inhomogeneous wave equa-
tion

Last lecture we found out that given the static sources

p=p(r) and J=J(r),

static fields
E=-VV and B=V x A

satisfying
\
Electrostatics: (curl-free) A g/[agnetostatics: (divergence-free)
V:-D =p V-B =0
VXE =10 VxH =]
\_ D = ¢E AN B = u,H -
can be computed using the potentials
4 N/ )
poJ (') s,
/ A — o=\ )
Vir)= / pIr) dr’, (x) /4#\1‘ - r’\d "
dme,|r — 1|
the solution of the solution of
2
V2V:—£ K VA:—ILLOJ /
N € /




e Over the next two lectures we will explain why in case of time-varying

sources

p=p(r,t) and J=

the full set of Maxwell’s equations (see margin) can be satisfied by

E=-VV - 8_A and
ot

in terms of delayed or retarded potentials specified as

~

p(rla t— #)

4rey|r — 1|

dr’,

Vir,1) = /

the solution of inhomogeneous wave equation

0*V 0

J(r, 1),
V-D =p
V-B =0
B=VxA VxE =
VxH = 1]
4 I
('t —
A(r,t):/ILL (I', c )d3r/’
dtlr — 1’|

the solution of inhomogeneous wave equation

O*A

2 —
\ V_IU’OEOW = =

-

€o

4

where ¢ =
\/ /JLOEO

e Note that retarded potentials
V(r,t)

are essentially weighted and delayed sums of charge and current densi-

ties

is the speed of light in free space.

and A(r, 1)

2A_ 00—:_0J
_ VA Tt = K J

z




pr;t) and  J(r,?),

while the fields E and B are obtained by spatial and temporal deriva- A
tives of the potentials.

e Alternatively, we can first use

0J /7t T ‘I'—I"
Amﬂ:/w . oy o B_vxA

4t|r — /|

and then find the anti-derivative of Ampere’s law

V X E = eoa—E
Lo ot

J=A=B=E

to determine E outside the region where J is non-zero, bypassing the
use of scalar retarded potential V(r,¢) — that is the most common
approach used in radiation studies.

We will next verify the procedure outlined above and the start discussing its
applications in radiation studies.



e The full set of Maxwell’s equations is repeated in the margin for con-
venience. Divergence-free nature of B compels us to define a vector

potential A via V-B =
B=VxA V X E
just as before. Inserting this in Faraday’s law we get V x H
0 0A
E=—VxA = Vx(E+—)=0.
V X Eilie x (E+ pr )
Evidently
A A
E + 8_ is curl free, so it must be true that E + 8_ =—-VV,
ot ot
or IA
E=-VV-—
ot

in terms of some scalar potential V.

V-D =

Main difference from statics appears to be the need for fwo poten-
tials, instead of one, to represent the electric field E under time-
varying conditions. We continue ....

e Now substitute

B=V x A and E:—VV—%—iL



in the remaining two Maxwell’s equations — Gauss’s and Ampere’s

laws 9
V- (E)=p and V x (u,'B) =J + E(EOE),
that we have not touched yet. Upon substitutions we get
0A 0 0A
EOV : (—VV — E) = p and y X Yr X A = ,LLOJ + /LOEOa(—VV — a),
V(V-A) - VA
which looks like a big mess.
But if we specify
V-A= —/106088—‘; (Lorenz gauge)
these messy equations simplify as
o0*V o 0?A
2 _ 2 _
VIV — MOEOW = —6—0 and V°A — MOEOW = —,LLOJ

which we recognize as the inhomogeneous or “forced” wave equations
for V' and A stated earlier on.

— The derivation of the decoupled wave equations above hinged upon
our use of Lorenz gauge which reduces to the Coulomb gauge,
V - A =0, in static situations.

— Note also that the forced wave equations reduce to Poisson’s equa-
tions under time-static conditions.

5



— Since we know how to solve the unforced wave equation from ECE
329, and since we know how to solve the Poisson’s equation, it is
now a matter of combining those methods to solve the forced wave
equations obtained above.

Just a few additional comments on gauge selection bhefore we go on (next
lecture):

e Gauge selection amounts to deciding what to assign to V - A.

e We can make any assignment that pleases us. This is like choosing the
ground node in a circuit problem. Whatever simplifies the problem the
most is the best gauge to use.

— Lorenz gauge is clearly a good one since it led to decoupled wave
equations which are very convenient to work with.

We can attack the decoupled equations for V and A one at a time.



4 Time harmonic sources and retarded poten-
tials

e The solution of forced wave equation

0*V 0
VYV - ue— = ——
HoCo ot? €,
for scalar potential V' is most conveniently obtained in the frequency

domain:

Consider a time-harmonic forcing function p and a time-harmonic re-
sponse V' expressed as

p(r,t) = Re{p(r)e’*'} and V(r,t) = Re{V(r)e/*!}

in terms of phasors

p(r) and V(r).

Then, the above wave equation transforms — upon replacing % by jw
— into phasor form as
o7 o0y P
VYV + poe,wV = ——.
6O
e For w = 0 the above equation reduces to Poisson’s equation, which we
know has, with an impulse forcing (for 1 C point charge at the origin)
1 1

p(r) = 6(r), an impulse response solution V(r) = el — o

1



where 7 = |r| denotes the distance of the observing point r from the
impulse point located at the origin.

— Note that this impulse response o< 1/r is symmetric with respect
to the origin just like the impulse input d(r).

We now postulate and subsequently prove that for w > 0, the impulse re-
sponse solution of the forced wave equation — i.e., with forcing function

p(r) =0(r) —is

. —Jjklr|
V(r) ‘ with &k = wy/lte€, = d
c

- 47e,|r|

Proof: For p(r) = d(r) the source of the forced wave equation (for an
arbitrary w) is symmetric with respect to the origin, implying that the corre-
sponding solution ‘N/(r) should also have the same type of symmetry. Then,
with no loss of generality, we can claim a solution for the case p(r) = d(r) of
the form

where

o f(?“) = 47360

o f(r)is to be determined for an arbitrary w as follows:

for w =0, and

Note that by substituting
the source function §(r) and
response function ﬁ back
into the Poisson’s equation

we obtain an equality

V2 (i> = —470(r),

||
which is a useful vector iden-

tity.



— Substituting f(r)/r for V(r) and &(r) for p(r) in the forced wave
equation (see margin), we obtain Forced wave eqn
(phasor form):

V%@) + ﬁ@ — _(5(1‘) i i .
g g € vV kv =L
which reduces, for r # 0, to €o
with
V%E) + k:?@ = 0. "
r

k= w\/ €, = —
c
— Since (as shown in HW) we have, by using spherical coordinates
(reviewed next lecture),

2 J (1) _ 1(‘92]‘
Vi r )= ror?’
it follows that we have, for r # 0,
1,0°f
(L L2 =
T(aTQ + f) Oa

which is in turn satisfied by
f(r) = ge™h = geTirle
with an arbitrary constant g.

— Finally, the constraint that f(r) = 1/4me, for w = 0 indicates that

1
9= Ame,’

3



and thus

GZFj kr called retarded solution of the
f (T) = wave equation. The alterna-
41 €o tive choice +jkr is not used

in the solutions f(r)/r of the wave equation with p(r) = §(r).

This concludes our proof of the postulated solution

6—]/{5|I'|
V(r) with k£ =w

B 4me,|r|

solution as opposed to the acausal alternative (see discussion below).

For the record, by scaling the result above:

- N

For p(r) = Qd(r), the causal solution of the
forced wave equation

VAV + KV = —

€o
where k = w,/l1,€, is the phasor

Q e—jk‘r

dme, T

V(r)

N

The choice —jkr leads to so-

w
Ho€o = —
C

more).

/ﬁkewise, for J.(r) = P§(r), the causal solin)

tion of the forced wave equation

V2A, + kaL = — o,
where k = w/1t,€, must be the phasor

_ pePe M
- Arx
which describes, with P = IAz, the vec-

A, (r)

Y

r

tor potential of the Hertzian dipole defined

\n Lecture 6. /

because it leads to an ad-
vanced solution that depends
on future values of the charge
distribution not available in
practice (this causality con-
straint is further discussed
later in this lecture).

Note that k£ is another sym-
bol for wavenumber /.
where the sign choice in the exponent favors the physically relevant causal this and higher level courses
in EM and signal processing
k is favored over f (for a good
number of reasons which will
become apparent as we learn



e We can next argue as follows:

—Jklr|
d(r) — |Forced Wave Eqn| — c
47e,|r|
and
6—jl{:|r—r'\
d(r — r’) — |Forced Wave Eqn| —
dme,|r — 1|
imply that

—jklr—r'| -
/ﬁ(r’)é(r—r’)d?’r’ = p(r) — |Forced Wave Eqn| — / Je d*r’ = V(r),

de,|r — 1/
giving us, on the right-hand side, the retarded potential solution in

the frequency domain.

e Finally, inverse Fourier transforming the above result back to time do-
main, we obtain

4 t_‘r;r
Vi) = [ CE i

where we made an explicit use of the time-shift property of the Fourier
transform as in

v — ]

p(r',t — ) & R, w)e wi=rl/e = 5(ph)e— k=],

C

— Note that V(r,?) is a weighted superposition of the past values of
charge density p(r,t) (as opposed to future values) because of our

5



use of the causal solution! (as opposed to acausal solution) of the
forced wave equation discussed above.

It is useful to stress at this point the relationship between a phasor (of a time
harmonic function) and a Fourier transform (of a time domain function) as
follows:

e A phasor, say, V(r) is a sample of a Fourier transform function V (r, w)
at the frequency w of a time-harmonic function that the phasor repre-
sents.

e Conversely, a Fourier transform V (r,w) represents a continuous collec-
tion of phasors V (r) representing time-harmonic functions of all possi-

ble w.

Based on the above correspondence principle we feel free to switch
between phasor and Fourier transform concepts as convenient.

IThis choice is also referred to as Sommerfeld’s radiation condition after Arnold Sommerfeld who also
developed an asymptotic formula that retains the causal solution and rejects the acausal one.

6

Question: is causality an ad-
ditional postulate on top of
Maxwell’s equations that needs to
be invoked to understand radia-
tion?

Answer: no, not really, we need
to invoke causality at this stage to
pick the relevant root of the solu-
tion for the forced wave equation
simply because we took a short-
cut of using a steady-state solu-
tion based on Fourier transforms
(phasors). Had we solved the
same problem as an initial value
problem (using the Laplace trans-
form), only the retarded potential
solution would have figured in our
answer naturally without having
to invoke a separate causality pos-
tulate — see J. L. Anderson,
“Why we use retarded potentials”,
Am.J. Phys., 60, 465, 1992.



Having finished the derivation of the retarded potential solution of the

forced wave equation for scalar potential, we can re-state our result, and by

analogy the result for the retarded vector potential as:

-

plr',t = =2

d*r’
de,lr — 1 ’

V(r,t) = /

{

0*V
2
VIV e

_ P

N

~

the solution of inhomogeneous wave equation

e
\r—r’|)

C

MOJ(IJ) t—

dr|r — 1|

d°r’,

Alr,t) = /

the solution of inhomogeneous wave equation

0*A

)

where
1

Ho€o

T

These results indicate that retarded potentials

V(r,t) and A(r

)

are appropriately weighted and delayed sums of

p(r,t) and J(r,

in convolution-like 3D space integrals.

t)

VA — lyep—— = — 1,
\_ P — /

is the speed of light in free space.




Next turning our attention to retarded vector potential solutions, we

Time-domain:

OJ ’t_ﬂ
A(r,t):/'u (ra c )d?)rl7

4t|r — 1/

the solution of the inhomogeneous wave equa-
tion

1 0°A

VA —

2o ~Haod.

N /

note that the results stated in time and frequency domains are as follows:

N

Frequency-domain:

. J (1 e iklr—r|
A(r):/IU“OJ(r )e dBr/’

4tlr — 1/

the solution of the inhomogeneous wave equa-

tion
9

V2A + CZ—2A = —lod.

N /

In the next lecture we will learn how to perform vector calculus operations in
spherical coordinates and then apply the frequency-domain result obtained
above to the calculation of radiation from short current elements.



5 Vector calculus in spherical coordinates E

In studies of radiation from compact antennas it is more convenient to use

spherical coordinates instead of the Cartesian coordinates that we are
familiar with. In this lecture we will learn

r cos 0

1. how to represent vectors and vector fields in spherical coordinates,

2. how to perform div, grad, curl, and Laplacian operations in spherical ey 7

< rsin@sin ¢
coordinates. . g
rsin 6 cos ¢ x
e A 3D position vector
r=(z,y,2)
with Cartesian coordinates (x,y, z) is said to have spherical coordinates
(1,0, ¢) where
4 N/ In terms of spherical coordinates, Cartesian coordi)

1 X N \/ > — nates can be expressed as
ength r = |r|=+vx*+y>+=z

LV +y? r = rsinfcos¢

2 y = rsinfsin¢

\_ z = rcosb. J

zenith angle # = tan™

1Y _ atan2(y, x)

x /

Ratios x/r = sinf cos ¢, y/r = sin @ sin ¢, and z/r = cos§ are referred to
as direction cosines cos 8., cos 0, and cos 0, respectively, as they represent
the cosine of the angle between vector r = (z,y, 2) and the x-, y-, and z-

azimuth angle ¢ = tan™
\_

directions, respectively, namely 0,, 8,, 0, = 0.

1



e In Cartesian coordinates we have mutually orthogonal unit vectors

A A A

I? y?z

pointing in the direction of increasing Cartesian coordinates x, y, z,
respectively.

e Likewise, in spherical coordinates we have mutually orthogonal unit
vectors

pointing in the direction of increasing coordinates r, 6, ¢, respectively.

e However, unlike , ¢, 2, the unit vectors r, é, gﬁ are not global —
rather they are local in the sense that their directions depend on the
local coordinates.

— The local nature of r, é, é becomes clear when they are expressed
in terms of the global unit vectors x, v, Z as follows:

r (z,y,z2

Fo= —:M:ﬁ:sin@cos¢—|—gjsinesin¢—l-20089
r r

~ —vy,x,(

¢ = =y2,0) >:—i“sin¢—|—g)cos¢
vV + y?

0 = gﬁxf:icosﬁcosgb+g)cos@sin¢—28111«9

Make sure you understand each of the terms above with reference
to the figure shown in the margin.

2

Unit-vectors 7, é,and <5 shown
in red, green, and blue point
in mutually orthogonal direc-
tions of increasing spherical
coordinates r, 6, and ¢, re-
spectively, such that 0 x ¢ = 7.
Note that 7, f,and ¢ are local
unit vectors (i.e., coordinate
dependent) unlike the global
unit vectors 7, y, and Z of the
Cartesian coordinate system.



e [n Cartesian coordinates we have an infinitesimal volume element
dV = dxdydz

which is used in 3D volume integrals and often denoted as “d’r”.

— Note that dV is the volume of a rectangular box formed by the
intersection of constant coordinate surfaces of two infinitesi-
mally close points having a separation vector

dr = zdx + ydy + zdz.

e Infinitesimal volume element d®r expressed in terms of spherical coor-
dinates and their increments is

dV = (dr) (rdf) (rsin0de¢) = dr r* sin@df do .
V' = (dr) (rdf) (rsin 0d¢) = dr r* sin o

solid angle increment = df?

— Once again dV is the volume of a rectangular box formed by the
intersection of constant coordinate surfaces of two infinitesi-
mally close points having a separation vector

dr = #dr + 0rdf + ¢r sin 0do.

— Note that in this case constant coordinate surfaces are no longer
planar globally, but over infinitesimal dimensions of dV' the sur-
faces will appear locally planar.

3

Any vector

where

A(r) = A2+ Ayg+ A2,

Az, Ay, and A, are the projec-

tions of A(r) on red, green, and blue
arrows aligned with .y, 2, respectively.

4

y

| ‘\dy‘ "
rsin0dg \£
o Y
r .
0 i D
E »n
L 8
oos
Tsi_@e— A . .
A 5 rsin @ sin ¢
rsin @ cos ¢ x
Any vector

where

A(r) = A7+ Agh + Ay,

A, Ag, and A, are the projec-

tions of A(r) on red, green, and blue
arrows aligned with 7,0, ¢, respectively.



/" In Cartesian coordinates div, curl)

and grad
0A, 0A, O0A
LA — x Yy z
v ox i oy 0z

0 0 0
A, A, A
ov . oV . 8V2

V = -
v 8azx+8yy+8z

are obtained by applying the del operator

G,
V:(ax’ay’az)

“algebraically” to vectors

A=Ac+Ay+ Az

~

/" In spherical coordinates div, curl, and grad

J(sin 0 Ay) 1 0Ay

1 9(r*A,) 1
V-A = —
r2  Or * rsinf 00 * rsinf O0¢
P 0 )
r2sinf rsind r
_ 0 0 0
VXA = 5 55 9

A, rAy rsinfdAy

ov . 10V . 1 oV,
vV = §T+;899+Tsin98gb¢

are obtained for vectors

A = A+ Agh + Ay

and scalars

Vir,0,¢)

as indicated above. Note that there is no del operator

that “works algebraically” in spherical coordinates.
/

and scalars
V(z,y, 2) ~

as indicated above.

\_ 4/



Example 1: Verify the 7 component of V x A formula in spherical coordinates by
showing that it corresponds to

A .dl
lim Je A
Ac—0 AC

where A¢ is the enclosed area of contour C' orthogonal to 7 marked in the margin
by blue and green edges.

Solution: In spherical coordinates

P 6 é
r2sinf rsinf r
_ 0 0 0

A, 1Ay rsinfA,

and, therefore, 7 component of V x A is

1 0 0 1 0 0

> smﬁ(@&r sinfA, — 8—¢7“A9) rst(@H singA, — 8_¢A9)

(VxA)-7 =

To show that this expression corresponds (as it should by definition) to
A - dl
lim Je A
Ac—0 AC

where circulation path C and enclosed area A¢ are as described in the question
statement, we first note that

Ac = (rsin0d¢)(rdb)

rsin Odo ‘/

“ rsinfsin ¢

rsin @ cos ¢

Sy



to second order in increments df and d¢. Also,
7{ A-dl = Ap(r,0,¢)rdd+ Ay(r,0 + db, ¢)rsin(6 + db)d¢
C
—Ap(r, 0,0+ dp)rdd — Ay(r, 0, ¢)rsin Od¢

starting on the green edge. Thus
§C A-dl . A@(ra 87 ¢) - A@(ra 87 ¢ + d¢)

Ac rsin fdo
Ay(r,0+db, ¢)sin(0 + db) — Ay(r, 0, ¢) sinb
+ :
r sin 6d0
which yields in the limit of vanishing df and d¢
1 1
8A 0 sinfA, =(VxA)-r

_rsin98—¢ 0t rsin 6 90

as requested.

r sin Odo \/

See Appendix A and B in Rao for a complete coverage of the
derivation of div, grad, curl in spherical coordinates.




Example 2: Verify the gradient procedure

oV 19v. 1 oV,
Vo= a0 a9

in spherical coordinates.

Solution: Independent of the coordinate employed, the total differential

ov ov ov
dV = —dx, + —dxs + —d
(9331 Tt 8332 T2t 8333 3

of a scalar function V' = V' (x1, x9, x3) and its gradient VV are related by

dV =VV -dr.

In the Cartesian coordinate system where V' =V (z,y, 2) and dr = Zdx + ydy + zdz,
this relation expands as

dV = (9_de + (9_de + (9_de =VV - (2dx + ydy + 2dz)
ox Jy 0z

and implies
ov._ oV, oV
VV = 8xx+ 8yy+ 822'

For spherical coordinates V' = V(r,0,¢) and dr = rdr + Ordo + ¢Er sin Odg, so we
have

oV oV oV . ~ y
dVv = 5 dr + 50 do + 8—¢d¢ = VV - (rdr + 0rd + ¢rsin0do)

implying that

oV, 1av, 1 oV,

0+ &,

VV_ETJF;aH rsinf 0¢




Example 3: Show that the Laplacian of a scalar field V(r, 8, ¢) is specified as

18,,0V 1 9 1% 1 9V
v?‘f _ 2 :
B ) (Sinb5g) + Zanre 0¢*

r2or:  Or r2 sin 6 00

Solution: Since the Laplacian is the divergence of a gradient, we start by noting that

oV +1@Vé+ 1 8‘/&
or r 00 rsinf 0¢ =

Applying to this vector the divergence formula

i@(rQ(VV)T)+ 1 9(sinf(VV)y) 1 9(VV),

VV =
vV 72 or rsin 6 00 +TSiIl(9 0¢
_ 1065 1 o665 1 Ol a)
r2  or rsin 6 00 rsinf  0¢

the above result for the Laplacian is readily obtained.




6 Spherical waves

In this lecture we will find out that short-filaments of oscillatory currents
produce uniform spherical waves of the vector potential propagating away
from the filament. The relationship between spherical waves of the vector
potential and the corresponding electromagnetic wave fields will be examined
in the next lecture.

We recall that time-varying solutions of Maxwell’s equations can be ob-
tained via

B=VXxA,

where the vector potential A(r,t) is related to time-varying current density
J(r,t) via

Time-domain: /frequency-domain: N

r—r’ ~ j(r/)e_jk|r_rl|
oJ / t — | ‘ _ Ho 3./
A(r,t) = / Ho (1 ¢ )d?’r/. A(r) / ',

_ p/
drt|r — 1| Amlr =

where

\_ k= wy/1o€o. J

e We will next examine the implications of the above results from Lecture
4 for an z directed infinitesimal current filament defined as

Iet) — {Icos(wt), for x =0, y =0, —%<z<%

0, otherwise. / z
v

I(z,t) = ]rect(AZZ) cos(wt)




where constant [ is specified in units of amperes (A). We can associate
with this infinitesimal current the following current density function

et = {15(1‘)5@) cos(wt)z, for — 42 <2< &2
0, otherwise.
= Ié(x)é(y)rect(i) cos(wt)z A
Az m?

recalling that the dimension of an impulse §(z) is m™!.

The oscillatory and 2 directed infinitesimal current filament of a length
Az can in turn can be represented in terms of a phasor

I(r) = Ié(x)cS(y)rect(Aiz)é %

We can also re-write this as

- rect(=) . A
J(r) = I5(z)0(y)A B2
(1) = 16(2)d(y) e = 520 2 5
in which the ratio with the rectangle in the numerator can be treated
as the impulse “d(z)” provided that the width, Az, of the rectangle is

considered an wnfinitesimal so that the ratio

rect(x>)
Az




represents in effect an infinitely thin and tall function centered about
z = 0 having a unity area underneath?.

e Next we substitute this current density phasor J(r) (with Az consid-
ered an infinitesimal) into the phasor formula for the retarded vector
potential to obtain

. J (e Jklr—'|
A(I’) _ /NOJ(r )6 d3rl

drt|r — 1’|
J(r))
r] / A N2 ,—jklr—r'|
_ ///,uo oz )o(y )Az0(2)z e da'd
4tlr — 1/

where the integrations are to be carried over 2/, ¢/, and 2’ in the range
—00 to +00.

e These are very easy integrals to take because of §(z'), d(y'), and §(2')
factors in the integrand, and lead to (after replacing all 2/, ¢/, and 2’
elsewhere in the integrand by 0)

e—jk‘r

Alr) =Horn

Z,
4 r

IThis treatment of Az as an infinitesimal is permissible in A (r) calculation provided that Az < \/2r =
k~' and r = |r|. This can be seen easily by noting that e ="' a e=hreFikAzcost/2 for p/ — £ 822 and
Az/2 < r, which is in turn ~ e 7¥" provided that kAz < 1. This amounts to having Az small compared

to all remaining lengths, ramely A and r, in the problem!



where r = |r| as usual. Converting this result into time domain by
multiplying it with e/“! and taking the real part of the product we

obtain R
A(r,t) = Z—OIAzCOS<w _ T)é.

/0 r

We have just finished deriving the retarded vector potential solution of an
oscillatory infinitesimal current filament known as the Hertzian dipole.

Our results indicate that for a Hertzian dipole oriented in Z direction, the
vector potential solution

Frequency-domain: Time-domain:
8 e eIk _ Mo\ _cos(wt —kr)
A(r) = EIAZ p— A(r, 1) 47TIAZ . 2

is also oriented in the 2z direction and oscillate in time at the frequency w
of the oscillating dipole. Note that:

1. These vector potential solutions describe a spherical wave (as opposed
to a plane wave) characterized by spherical surfaces of constant
phase associated with

e and  cos(wt — kr)

variations in frequency and time domains.

2. Spherical wave solution is uniform in the sense that the vector potential
phasor A is constant (in direction and magnitude) on spherical surfaces

4



of constant phase (in analogy to uniform TEM plane waves of electric
and magnetic fields studies in ECE 329).

3. Clearly, the propagation speed of the spherical wave is

w w
/l}p—_— :C.

ko wy/lo€

4. The spherical wave is also characterized by an oscillation amplitude
1

r

that varies as = away from the radiating source

e In the next lecture we will take the curl of this result (using spherical
coordinates operators) to obtain spherical (but non-uniform) waves of
B that accompany the A-waves, and then derive the accompanying
spherical (but non-uniform) E-waves using Ampere’s law.

— We will find out E- and B-waves derived from A-waves are in
general non-uniform and form “beams” of directions along which
field magnitudes |E| and |B| maximize over spherical planes of
constant phase.

— The mathematical description of these beams is provided by the
“oain function” and the “solid angle” of the radiating system to be
defined and explored in Lecture 10.

e In deriving E- and B-waves from A we will not explicitly worry about
V(r,t) and p(r,t) that accompanies the Hertzian dipole behavior (since
J contains all information included in p variations).

5



e For completeness sake, however, let us examine what kind of p(r,?)
variation should be expected for the Hertzian dipole.

The Hertzian dipole is a hypothetical radiation element defined and intro-
duced above. Its main utility is that it has the simplest radiation properties
that one could imagine and use as a building block to represent more com-
plicated (and practical rather than hypothetical) radiation elements.

e A Hertzian dipole was defined as a filament of an infinitesimal length
Az which is carrying a constant (z-independent) current at each instant
of time ¢.

— Since outside the filament the current vanishes, charge conserva-
tion and the continuity equation
dp

bl .J =
8t+v 0

demand that there has to be a time-varying charge accumulation
at the two ends of the filament.

Since for a z directed Hertzian dipole, J = ZJ., we can write the
phasor domain form of the continuity equation as

wp + 0J; _ 0
J l) é?Z - M
Thus, with
N z
. =1(x)d(y) rect(A—Z)

6

AZ

Current

»

xr

J. = Ié(x)é(y)rect(é)

Charge

—|—0(z — Az/2)

-

v

—
++ (2 + Az/2)

p=j—0(x)o(y)

I
Y8z + Az/2) — 6(z — Az/2)]

Depicted charge density (red)leads
the depicted current density (blue)
profile by a quarter period because
of j term in charge density.

Positive reservoir of charge at z<0
end of the dipole discharges into

the negative reservoir at the other
end causing half a cycle of z-directed
current across the filament.

By the end of half-cycle the top end
is positively charged and the bottom
end negatively, so a new half-cycle
with motions in the opposite
direction starts.



and

0J. Az Az
=~ 1o@)y)las + 5) — 6 — )
we get
A 1o, I Az Az
i J—0(2)o(y)lo(z + —) —d(z — )]
In time-domain this corresponds to
I Az Az . . C
ploe, 1) = ~0()6(y)6(= — =0) = 8+ )] sin(wt) —
accompanying the current density variation
J(r.t) = I6(a)3(y)rect(5) cos(wh):
r.t) = x)0(y)rec N cos(wt)2 .

e Clearly, the result above shows that the “ends” of a Hertzian dipole
element located at z = j:% serve as point-charge reservoirs (of opposite
polarities) sustaining the current variations of the element.

— Radiated fields of the Hertzian dipole should be attributed to both
the time-varying p and the time-varying J even though considera-
tions of J will be sufficient to determine the radiated fields owing
to the dependence of p on J that is built-in within Maxwell’s equa-
tions.

AZ

Current

i

I8}
I
~

5($)(5(y)rect(Ai)

z

Charge
—|—0(z — Az/2)

>

xr

—
+H+ (2 + Az/2)

1
P=J-
w

6()d(y)
[0(z + Az/2) — d(z — Az/2)]

Depicted charge density (red)leads

the depicted current density (blue)
profile by a quarter period because
of j term in charge density.

Positive reservoir of charge at z<0
end of the dipole discharges into

the negative reservoir at the other
end causing half a cycle of z-directed
current across the filament.

By the end of half-cycle the top end
is positively charged and the bottom
end negatively, so a new half-cycle
with motions in the opposite
direction starts.



7 Hertzian dipole fields

e We concluded the last lecture with the retarded potential solutions

Frequency-domain: N\ Time-domain:
. Lo eIk _ Mo cos(wt — kr) .
A(I‘) = EIAZ . 2 A(I‘,t) 47T]AZ " Z

/

of a z directed Hertzian dipole.

e We noted that these oscillatory solutions describe spherical waves by
virtue of the e™/*" dependence of the potential phasor on 7:

— the variable r measures distance in all directions away from the
origin, as opposed to, say, x measuring distance only along one
coordinate axis labelled as x.

Thus, while the phasor variation e 7** describes a plane wave, the pha-
sor e /" describes a spherical wave (see margin).

We will next determine the magnetic and electric fields produced by a Hertzian
dipole.



e To calculate the magnetic field phasor B we will make use of

i o ¢
- - - r2 S;Il 0 rsind I ' . .
B=VxA and VxA= 5 % a% in spherical coordinates.
A, rAp rsin Qflgb

e (Given that

A Hopp o
(r) = dm y o,
AZ(I')
and A A
zZ-r=cosl, z-0=—sinf, z-¢=0,
it follows that
A, = A(r) 7= A.(r)cos¥,
Ay = Alr)-0=—A.(r)sinb,
A¢ = A(I‘) . gb = U.

7 0 )
N r2sin 6 rsin 6 r
V x A = Horas ¥l 0 0
A or 0 19J0)
e Jkr —jkr
cosd —r&——sinf 0

—éAZ sin

rA, cost




Expanding the determinant, we obtain

B=VxA

Consequently,

e To obtain the accompanying electric field phasor we will next employ

Ampere’s law

with J = 0, which is true at all locations outside the Hertzian dipole.

In that case

~

E

— Horpn? {——

A r- Or

1
— Ho —ZINA2(jk + )Sin«9

4

H = jkIAzsin s

—gkr 1
B+

mr

—jgkr

r

V x H=1J+ jwe,E,

sin @ —

6—]’/{;7’ R

&,

Jkr

aejk:r

00 r

).

V x H B
jwe,
P 0 o 7 0
1 TQEnH rsianﬁ 5 _ 1 7»23119 TSE@
jwe, | O 99 99 jwe, | O 0
H. rHy rsin 9H¢ 0 0
1 PO N 0 0
rsinfH, — — rsinfH
jwe, \r2sin 000 ° " rsmlor o}

3

cos 6}

,%\J|Q3ﬂ [->

r sin 9H¢

Notice, the wave field
H(r) = ¢Hy(r)

of the Hertzian dipole is
purely “azimuthal” — this is
the direction the right-hand-
rule would give if the right-
hand-thumb were directed in
the direction of dipole cur-

rent.



1 7D - 00 -
= ndH, — ——rH,}.
jweo{rsin989 R Y- o}
Substituting
i, = jRIAZ(1 + ——)sin 6"
6=17 2( +%)Sm o=
from above, and simplifying, we have
~ jkINz = 1 O 1 .. ek §9 1. ek
E = 01+ — 0 — ——1r(1+— 0
Jwe, {Tsinﬁf?@ sin +jkr>sm dmr r@rr( +jk7“)sm dmr
kIAz 7 1 e 7% 9 0 0 1 eI
= 1 in® 6 — —sin f—(1 + —
we, rsind i jkr” 4mr 06 o o 87“( i jkr) A J

j ]f’f’2} dmr

gkr’” Anr Jkr

[o (7 1 e ; 1 e
_ M_]Az{i(1_|-—)€ 2c086 4+ 0sinOjk(1 + —) + ‘ ¥
€, r

e kT 1 1

in A1
- {sin 09[1 + Er + <jkr

_ e
?70 f— —.
60

e This is a very complicated looking result.

)?] + 2 cos 07 !

= jkn, Az :
Jkr

where

— Fortunately, many of the terms above are important only at very
small values of r!

}




e If were to drop all of the terms in E and H above except for those
1

varying as -, we would be left with
N e—jkW . N e—jkr R
E = jn,lkAzsinf 0 and H = jlkAzsin6 0,
mr Amr

which are the only terms of the fields of the Hertzian dipole that matter
at large distances (of interest for communication and remote sensing
purposes).

— They are called the radiation fields of the Hertzian dipole, and
the remainder (the terms which have been dropped) are called the
storage fields.

— The reasoning behind this terminology is as follows:

The average Poynting vector
1 _
(Ex H) = éRe{E x H*}

computed with the full expressions for E and H gives the same
result as that computed with only the simplified radiation fields.

— What that means is the remaining parts of E and H (storage
fields) do not contribute to the transport of energy away from the
dipole.

— They only represent a local energy exchange (and storage) between
inductive and capacitive attributes of the dipole — recall that the

D

Radiation fields:

E = jn,lkAzsinf

and

H=jlkAzsinf

e

e

—gkr

A~

0

mr

—gkr

mr

A~

Q.



dipole is both a filament having some inductance and a capacitor
with two reservoirs for charge storage.

In many applications of radiation theory we only need to focus on the radi-
ation fields.

Fortunately, the expressions for radiation fields are simple and have fea-
tures resembling the plane TEM waves that we are already familiar with.
Let’s see what these features are:

1. The phasors are orthogonal and
ExH «0x¢=r

points in the radial direction 7 of the spherical wave propagation just
as in plane TEM waves.

2. The magnitude of H can be obtained by dividing the magnitude of E
by the intrinsic impedance 7, just as for plane TEM waves.

3. Conversely, the magnitude of E can be obtained by multiplying the
magnitude of H by the intrinsic impedance 7, just as for plane TEM
waves.

4. The direction of H can be deduced from the direction of E (and vice
versa) by a 90° rotation and enforcing the right-hand-rule of having
E x H* point in r direction.

Radiation fields:

E = jn,lkAzsinf

and

H=jlkAzsinf

e

e

—gkr

A~

0

mr

—gkr

mr

A~

é.



On the other hand, these spherical TEM waves radiated by the Hertzian
dipole differ from uniform plane TEM waves by the facts that:

1. Field amplitude is not constant in the propagation direction because of
% dependence.

2. Field amplitude is not constant in the direction orthogonal to the prop-
agation direction because of sin # dependence.

As such, a Hertzian dipole radiates TEM waves which are non-uniform
as well as spherical (non-planar).

As such, Hertzian dipole radiation is said to be anisotropic!

e Radiation is strong — forms a “beam”, so to speak — in the broadside
direction of # = 90° (with respect to the dipole axis),

e Radiation vanishes for 8 = 0°,180° along the dipole axis.

— In short, radiation strength scales with Azsin @, a foreshortened
version of length Az of the dipole “seen” from an angle 8 with
respect to the dipole axis. More on this later on...

Radiation fields:

- e Jkr
E = jn,lkAzsinf 0
r
and
~ eIk
H=jlkAzsinf Q.
r



8 Radiation fields of dipole antennas

e Radiation fields of a z-directed Hertzian dipole from the last lecture

are repeated in the margin.

e In this lecture we will first obtain the radiation fields of short dipole

antennas by superposing the Hertzian dipole fields.

e A “short dipole” is a practical antenna — as opposed to a hypothetical
Hertzian dipole — consisting of a pair of thin straight conducting wires
of equal lengths % placed along a common axis leaving a short gap

between them (see margin).

— A short dipole is typically used by connecting a “source” across

the gap that constitutes the “input port” of the dipole antenna.

— Let’s assume that the source is an independent current source

I(t)=I,coswtA < I=1,/0=1IA

and that the gap is an infinitesimal Az so that the dipole and its

input port occupy the region —% <z < % in total.

— We can then envision the entire dipole, including its input port, to
be a stack of Hertzian dipoles of lengths Az, with each Hertzian

L

dipole centered about position z (in the interval —5 < z <

carrying a current I(z), subject to boundary conditions

8 - L
I1(0) = 1,0 A and I(:l:a) = 0.

1

L

2

)

Radiation fields:

E = jn,lkAzsin6

and

H=jlkAzsin6

ro|
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In conformity with these boundary conditions we will assume that
I(2) is a triangular current distribution

~

I(z) = IOA(%) A.

e What are the radiation fields of the short dipole antenna described
above?

We can answer this question in several different ways:

1. We could turn the specified (z) into a corresponding J(z), and
then, in succession, calculate the retarded potential A, the mag-
netic field B = V x A, and then obtain E from B using Ampere’s
law as we did for the Hertzian dipole. Finally, the storage fields
decaying faster with distance than % would be dropped from E
and B to obtain the radiation fields exclusively.

2. A variant of (1), but with the radiation field H immediately de-
duced from B, and then E is obtained by multiplying H by 7, and
rotating it by 90° so that E x H* points in 7 direction.

3. Superpose shifted and scaled versions of the radiation fields of the
Hertzian dipole (as we will do shortly).

All these options enumerated above will work because Maxwell’s equa-
tions and radiation process have linearity properties.

Triangular current
distribution



e The radiation electric field

e—jkr .
E = jn, kAzsinf

0

4rr

of a z-directed Hertzian dipole

J=2IAz0(x)d(y)0(2)

implies the following linear relationships for a z-polarized radiation pro-

cess, where the input function shown on the left represents the current

distribution of the radiator:

_ . ‘ _ e_jk|1"| A Field due to dipole at the ori-
d(z) — |z-pol radiator | — jn,k sin 0 0 gin
47t r|
B — o J(0)kAz sin 05— §
E—in :
and an ( ) Z Sln -
. /4 Field due to displaced dipole
e—j/{:|r—z Zl
! 2 1 : ‘ : ! / —jk|lr—2'2|
- radi T 1mn N ~ J R
d(z — z') — | z-pol radiator| — jn,k sin 6 o F—— 7 E:j%[(z,)mzsme,;'r_z/2|9,

where (see margin)
r— 2z

A

cost =2 —">=
r—2z'z2
r — 2'Z|

the implication is then

—jk|r—2'3| R R

‘ f'd>' = B(r)

/f(z’)é(z—z’)dz’ = I(z) — | z-pol radiator| — /jnof(z’)k sin 0’

ditlr — 2'Z|



e The final result, the expression

) —jkfe—2]

E(r) :/jnof(z’)ksme’ ‘ —0'dz’

A

for the radiation electric field phasor is in fact very general, and ap-

plicable to dipole antennas of all lengths provided that the current
distribution I(z) on the dipole is known.

e In practice, the triangular current distribution

j(Z) = ]OA(%> A Triangular current

distribution

we have described earlier turns out to be applicable only when the
dipole length

c
L<<€)\N=—
/
at the operation frequency f = ==. For such dipoles

) y gﬂMrzd )
E(r) = /jnOIOA(—)kSmQ’ —0'dz’

e—iklr—2"2]
= 01, k/A sm@' —0'dz’
—]k‘|I‘| L e_jkr ~
~ Nl k{/A )dz' }Sme Il 0 = jnolok§ sin @ o= 0,

L/2, area of a trlangle with height 1 and base L



where the condition L < X is used to justify the replacement of [r—2z'Z]|
by |r| =1
e Notice that the result

. L —jkr
E(r) = jn010k§ STy

drr

is identical with the radiation field of the Hertzian dipole except that Radiation fields

of the short dipole:

— infinitesimal length Az has been replaced by a finite length % Lk

corresponding to the dipole half-length. E - i [0k£ sin @ 0
2 Amr
e The corresponding radiation magnetic field of the short dipole is and
- ' L ' e_jkr .
H(r) = ]I(,k§ sin 6 - 0. I
H=jl,k—=sinf Q.
2 Amr

— Dipole half-length % is also known as effective length of the short
dipole antenna.

e The term effective length is used more broadly to denote

I ‘
() = /%eykzcosedz

defined for any length dipole antenna having a phasor current distribu-
tion I(z) and a phasor current [, at the input port (or input terminals).



— For a short dipole with the current distribution

. 2
I(z) = LA(T),
where L < A, this definition yields
(o) = g
Effective length
— For a half-wave dipole with the current distribution IR s
) 0(0) = / ]—Oe] dz.

I(z) = ]Orect(%) cos(kz),

where L = %, this definition yields

(6) = icos(% COS 9)’

T sin?é

as will be shown in ECE 454.

Radiation fields of all linearly polarized antennas can be obtained
from those of the Hertzian dipole by replacing “Az” with an ap-
propriate effective length “/(0)” as illustrated above.

e The justification of this general rule is as follows:



Replacing A(%) with an arbitrary %’Z/) in the second line of the above ex-

pression for E(r), we have

~ j / —jklr—=2"2]
E(r) = jﬁofok/ (Iz)sinﬁ' ‘ —0'dz’

Imtlr — 2'2

I(2) .. .
~ jnolok{/ %e‘jm_”'dz’} sin 6

1 .
0,
47t|r|

where in the second line we have replaced all occurrences of 8" by 6 and
Ir — 2'Z| by |r| = 7, except for in the complex exponential which is highly
sensitive to 2.

e Replacements outside the exponential are easily justified with any finite
length L (large or small) for r > L.

e Treating k|r — 22| as k|r| = kr in the exponent cannot be permitted
when k is large,

but approximating k|r — z2'z| as kr — kz'cos6

can be tolerated for sufficiently large r in the so-called paraxial ap-
proximation' to obtain

s o /,\ s _/ s . /
e Jklr—2"Z| ~ e jk(r—z"cos) _ e jkrejk:z (:0897

L... also known as small angle approximation in reference to the angle between the vectors r and r — 2/2
— see the margin plot. In this approximation we pretend that the vectors r and r — 2’2 are parallel to
one another!




leading in to ~
2 . f B
( ) e_jkr L/“‘ r \ \\\ \I_.',,.z + (L/z)z N+ %
E(r) =~ jn,lk 22 Lk st in 6 0, PR
J Lo J Amr e
= /(0 N 5y
(0) ;

a general radiation field expression formulated in terms of effective 1n paraxial approximation the dashed

lines are treated as having equal

lengths (which is only accurate for
1€Hgth €(9> r going to infinity), leading to

a phase error of

. . . . . ]\‘L” ,’.‘.2[42
— This result is certainly valid for all » > L where it makes sense =7 md

to consider r — 2’z and r to be parallel vectors.

The phase error is less than

2

— The validity limit of paraxial approximation can be investigated 7.4 . olerabic if.,.>-§‘
more carefully by expanding k|r — 22| to a higher order, and find-

ing under what condition high-order correction factors are really Altematively,

unnecessary — that exercise (see the margin) shows that paraxial M- 25| = T TP TG 7

approximation is well justified for = kry/1— 222/72 1 2212,
> 2L2 where r = /22 + y2 + 2z2. Hence
r
)\ klr — 22| = kr(1 — 22" /12 + 2'% /1% /2)
where the “threshold distance” 2L?/\ is known as Rayleigh dis- = kr — keosfz’ + k2"*/(2r)
tance. provided that 2/ < 7.

Finally the term kz'2/(2r) can be ne-
glected above, even with maximal val-
ues at z/ = +1/2, leading to the parax-
ial approximation result |r — 2'Z| ~
r — 2 cosb, if k(L/2)%/(2r) < 7/8, the
same as r > 2L2/\.

e Even though we have developed a general representation for the ra-
diation fields of arbitrary dipoles in this lecture, our discussions over
the next few lectures will focus mainly on short dipoles as our basic
radiation elements.



9 Poynting vector, radiated power, radiation re-
sistance

Consider the radiation fields of a z-polarized short-dipole antenna shown in
the margin:

e How much average power is radiated by the short-dipole antenna to
sustain these fields, and

e how can we determine this amount, F,,;, by electrical measurements
which can be performed at the antenna input port — the small gap
at the dipole center where the dipole is connected to the source circuit
(typically via some transmission line network)?

To answer these questions we will calculate in this lecture the average
Poynting vector of radiation fields of the dipole antenna and the “fux”
of the same vector computed over a sphere imagined to surround the dipole.

e Recall once again that Poynting vector
S=ExH

denotes the energy transported by electromagnetic fields per unit time
and per unit area normal to the vector itself. With time-harmonic fields
the average value of Poynting vector can be denoted and computed as

1 .
(E x H) = §RG{E x H*}
in terms of field phasors E and H.

1

| J = 2J,

Radiation fields
of short dipole:

E = Ey0
and
. E, -
H="¢
No
where
6—]’/{;7’

Ey = INod kil sin 6

4r

and ¢ = L/2.



It is this quantity
(S) = (E x H)

which is independent of the storage fields of dipole antennas and only
depend on their radiation fields.

Using (see margin once again)

~

/ljzzjz v

~ ~ ~ - —jkr
E =0FE; and gb— with Ey = jn,Iklsin 96
Mo dar Radiation fields
we find of short dipole:
P ) - B |E)? -
ExH =0F) x (6—2) =60 x ¢ 9’ Bl E = Eyf
Mo Mo
and . and
(E x H) 1R {E x H*} B ”
= —InE =T . N E R
2 2770 H = —gb
Since N "o
B G2~ BIPRS00 gL sin’ o T
= , —]k‘r
(47r)? A(Ar)? Ey = jnol Kkl sin 05
we have , , dmr
E 0 / _
<E > H> ‘ ‘ n ‘] ’2 ‘ | sin 97,, and € L/2.

"o, (Ar)?

The expression above is the energy flux density or transmitted
power density of the dipole antenna as a function of distance r from
the dipole and angle 6 of viewing direction off the dipole axis.

2



e The average power output of the dipole — radiated power P,,q — can
next be obtained by computing the flux of (E x H) over any closed
surface surrounding the dipole.

— This calculation is most easily carried out over a spherical surface
of radius r having infinitesimal surface elements

dS = 7(rsin 0de)(rdl) = 7r?sin 0dOde = rrds2,

where

dS) = sin Odfdo

(introduced to maintain a compact notation) is called a solid an-
gle increment.

We then note that

_ 2
(E x H) - dS 8)\2‘]’ |4|% sin? 6dS2
and the flux of (E x H) is
2 2
f{Ex H) -de = 8)\2 /dQM sin” 6

"

P, rad

where it is implied that

/dQ / d@ sin 6.
$=0 6=0

N
rsinfde \£ -
irdo Yy
r/
0 ' D
E n
L S
s
TS"LT.L-G .
%) rsinfsing
rsin @ cos ¢ x

Infinitesimal area on a con-
stant r surface is

dS = (rdf)(rsinfde)
= r%dQ

where
dQ) = sin 0dfd¢

is called infinitesimal solid
angle.



— This result can be cast as

1 o e lsind
Prad — §Rrad’10‘2 where Rrad — 4?1\2 /dﬂ‘g sin (9‘2 \

1s known as radiation resistance.

o If /is the effective length of a dipole — distinct from its physical length
L because of current weighting — then £sin 6 is “how long the effective

length looks” when one sees it (the dipole) at an angle (see margin). A L ¥
Solid angle integral of the square of this “foreshortened” effective / ; i 008

length, namely
Note: recall that / may be a

/ dﬂw SN 9‘2, function of ¢ itself!

determines the radiation resistance of the dipole antenna.

Since for a short dipole ¢ = % is independent of angle 6§ (unlike for
half-wave dipole), we have

2T T
/dmzsme\? _ (%)2/619;81119\2:(%)2/0 d¢/0 46 sin 0] sin ]2

L T 2mL?
= (—)227'('/ df sin 0| sin §|* = il
o), 3

\ - o
Vv

4/3

Hence the radiation resistance of the short dipole is

Mo 012 Mo 2mL? N 2, Lo
Rywd = 4)\2/d§2|€sm€| = 3 = 207 (X) Q.

4



e Since a short dipole is constrained to have % < 1, say 1—10 or smaller,

R,,q will be equal to or less than about 2 ().

e Thus, a short dipole with an input current of I(0) = I, = 1 A will have
at best an average power output %] OQRmd of about 1 W.

This is not quite at the level of 100s of W’s of power that typical radio
stations transmit!

Using antennas with higher R,,; than a short dipole! — e.g., a half-
wave dipole for which R,,; =~ 73 () — is the best way of addressing this
difficulty since the alternate solution of increasing I, (as needed) is not
recommended because of antenna losses:

— In practice, antennas appear as a circuit element with input resis-

tance
Ro - Rrad + Rloss

where Rj,ss represents ohmic losses (heating of antenna wires) —
an antenna consumes an average power of

1
513(Rrad + Rloss)

out of which only
1

2
IShort dipoles are typically employed as receiving antennas rather than transmitting antennas because
of this. Receiving properties of antennas are closely related to their transmission properties, but figures

of merit of antennas pertinent in transmission and reception are somewhat different as we will learn later
on in the course.

I 3 Rrad




is the useful radiated power.

Typically Rjss o< L, whereas R,qq oc L? for small L, so going to longer
dipoles (and learning more about them in ECE 454) really helps.

e A source circuit connected to the antenna terminals “sees” the antenna
(and the radiation volume with which the antenna interacts) as a two-
terminal element having some impedance

Vo
— =R, +jX
](O) (] o

known as antenna impedance.

Zo

— We have already discussed the resistive component R, above.

— Modeling the reactive component X, requires working with
storage fields of the antenna as well, matching components of total
fields to proper boundary conditions imposed by the actual sur-
faces of antenna wires (i.e., antenna geometry needs to be specified
in detail before X, can be determined).

Antenna reactance will be examined in some detail in ECE 454
(along with methods of calculating I(z)).

— We will not need to calculate antenna reactances in this course.
However, it is worth mentioning that

1. antennas with X, = 0 are known as resonant antennas, and

2. half-wave dipole is a resonant antenna (see margin note).

Source ; Antenna
Circuit
ZT [(OE IO
L R
VT ‘/0 Zo = Ro +jAXo

Antenna reactance:

Short dipoles have capacitive
reactances, just like the line-
impedance at a small dis-
tance away from an open ter-
mination on a transmission
line.

Capacitive reactance
switches to an inductive
one when the dipole length
is about A/2, just like the
line-impedance at a distance
A/4 away from an open
termination.

Thus the half-wave dipole is
resonant, having a zero input
reactance — 7, = R, .4+ 70 for
an ideal half-wave dipole.

In practice, resonant half-
wave dipole with a length L
and wire radius a has L+2a =
A/2 to a good approximation.



10 Antenna gain, beam pattern, directivity

e A dipole antenna (or a closely related monopole to be studied in Lecture
18) is a “near perfect” radiator for purposes of “broadcasting” — that is,

Beam pattern plot of low di-
rectivity dipole antenna:

sending waves of equal amplitudes in all directions to reach out multiple

targets or receivers.

e However dipole is a poor choice when the objective is to radiate the
power P,.4 in a specific direction (i.e., towards a specific receiver), as
in

— communication with deep space probes or orbiting satellites, or
with

— radar beacons where the objective is to determine the direction
of a moving target.

In such applications we need high-gain and directive antennas, as
opposed to low-gain and non-directive antennas such as a single dipole.

e ualitatively speaking, gain and directivity of an antenna measures its

A higher directivity beam

pattern of an array antenna

ability to confine its radiated wave fields within a narrow field of view

called the antenna beam or beam pattern.

— when a narrow antenna beam is achieved, and all the radiated
power P,,; of the antenna is conveyed through this beam, the
power density of the waves is naturally high within the beam.

1




Arrays of dipoles can serve as high-gain antennas needed in
beaming applications as we will learn in the next lecture.

In this lecture we will focus on the definition of antenna gain
and directivity as well as the related concept of beam solid
angle.

Consider an antenna located at the origin with an input current of I, [(E x H)|
radiation resistance R,.q, and a radiated power ;

1
Poog = 5 |1, |* Ryqq Watts.

What would be the time-average Poynting magnitude [(E(r, ¢)xH(r,t))],
i.e., the power density in Watts/m? of the radiation fields at a location

r = (1,0, ¢) a distance r away from the antenna? ‘ ;
2
-P'rad = éllo‘ Rra.d

Power density of a radiating
antenna in the far field

Answer:

— If the antenna were an isotropic radiator then we would have a
power density of

(E(r,t) x H(r,t))| = Prad .

A2’

however, no real antenna is an isotropic radiator, and thus the
correct answer can be formally cast as

(B(r, t) x Hir,0)| = 2 G(6, )

Arr?

7



in terms of an antenna gain (over isotropic radiator)

t) x H(r,1))|
Prad ’
Agrr?

Clo.oy = LB

to be determined.

Clearly, gain G(6, ¢) is the ratio of the radiated average power density
of an antenna to that of an isotropic radiator (hypothetical perfect
broadcasting antenna) radiating the same average power P, ..

— According to this definition, the solid angle integral of gain G(0, ¢)
1s

A [ dOr?|[(E(r.t) x H(r, t
[ aasi,6) = LEUBE0) x -0
Prad
= A $ (E(r,?) x H(r, 1)) - dS = 47, a fixed value.
Pmd
Since

G (0, ¢) < {E x H)| o |[£sind|?,

we can write

G(0,¢) = K|lsinf|?

in terms of a proportionality constant K, which is subsequently iden-
tified as

4
K = fdQ]éZin@P after applying the constraint /dQG(@, ¢) = 4.

3



Thus we obtain a general gain formula

47|l sin )

G0, 9) = [ dQ¢sin6]?

applicable to all antennas for which the foreshortened effective length

¢ sin 0 1s known.

For an arbitrary antenna, gain calculation can be complicated because
of the solid angle integral in the denominator in G(#, ¢) formula.

However, for a short dipole with £ = L/2 the calculation is simple and Gain functions G(6,6) de-

leads to (in case of Z-polarization) If)icted on a constant ¢ plane
or
47_‘_‘ sin 0|2 47_(_| <in 9‘2 3 (a) short-dipole (red curve),
. L Y2 and
G(0,0) = [dosmo)? ~ 2nd 2 sin” 0. (b) half-wave dipole (blue
3 curve).

For a half-wave dipole it works out that

cos?(5 cos 0)
sin” 6

G(0,¢) ~ 1.64

with a maximum value of 1.64 at 8 = 90°.

— Having maximum gains of 1.5 and 1.64, respectively, short- and
half-wave-dipoles are considered to be low-directivity antennas.



Directivity D of any antenna is defined to be the maximum value of its
gain G(0, @), i.e.,
D =G0, ) maz-

While the solid angle integral of G(0, ¢) is constrained to have a fixed value
of 47, there is no constraint on the maximum value of G(6, ¢); therefore, it is
possible to design antennas with arbitrarily large directivities D by making
the antenna beam shape arbitrarily narrow.

e Note that the constraint
/dQG(@, ¢) =47

implies

G(0,9)
D / df) ’ = 4,
G(0,9)max
which can also be written as
D), = 4.
in terms of beam solid angle

G9,9)
G (0, &)maa

to be discussed further in this lecture.

Q, = | dS2

Gain function
3 .,
G(9,¢) = 5 sin 0

of short-dipole depicted as
a 3D polar plot — gain in
any direction (0, ¢) is propor-
tional to the radius vector
from the origin to the de-
picted surface.

A short-dipole has a low di-
rectivity of

D =15

because it radiates with a
broad beam that is isotropic
in azimuth.

Antennas with high-
directivity have narrow and

pointy beam shapes.



e Important result: the product of antenna directivity D and the beam
solid angle €2, is fixed, specifically

D), = 4,

which implies that if D is large then (), is small and vice versa. Antennas  with  high-

. . L . directivity have narrow and
e A useful method to determine the antenna directivity is to use

4
D= —
Q,’

pointy beam shapes.

where the solid angle

B G0, o) _/ ¢ sin 0|
QO/dQG(Q,@max N dQ|€Sm€|2

max
can be calculated once the antenna effective length is known.

Example 1: For a short dipole with ¢ = L /2, we have

. 2 4
QO—/dQM—/dein@F—ng—8—7T.

[ s 670,

Consequently,
A A

0, 8r/3

consistent with what we learned above.

D = 1.5

— This method of finding D from (2, is very useful because there are
geometrical methods for estimating (), in terms of the physical

antenna size (as we will learn later on).

6



Once D is determined, the gain of the antenna can be written as

(sin 6>
G0,0) = D]
|¢sind|2,.
without the need to perform a solid angle integral in practice. Antennas  with  high-

) directivity have narrow and
e The beam solid angle

G(6, ) / |0 sin 0|
Q, = Q) = ()——
d G (0, ) maz d ¢ sin 02

max
extends the concept of “angle” from 2D to 3D to describe the angular

pointy beam shapes.

width of the antenna beam pattern. Let us examine this parameter
more closely.

e Ordinary angles ranging from 0 to 2w radians (with degree equivalents
ranging from 0 to 360) correspond to arc lengths measured on unit-
radius circles drawn on 2D planar surfaces.

e Solid angles ranging from 0 to 47 steradians correspond to areas of
patches or spots specified on unit-radius spheres defined in 3D space.

— An antenna-beam solid angle

Gl (E x H)|
B0 = LRG0 S / e X ) s

is an equivalent area of a spot or a patch (centered about the
direction of [(E X H)|q.) specified on a unit sphere surrounding

7



the antenna, having the property that the entire power output P4
of the antenna would flood this area with an equal flux density of
|(E X H)|,q, if the beam were reformed into a conical shape. Antennas  with  high-

— Beam shapes of high-directivity antennas with small ), can be well directivity have narrow and
represented by equivalent conical beams, but such a representation Ponty beam shapes.
is not appropriate to dipole-like broadcast antennas (see margin).

Example 2: For a short dipole with

G(0,0) = gsin2 0

e have 3 | sin 62 4 8w
D:§ and QO:/dQMZQﬂ-g:?
as we already established in Example 1.
Consequently, . A
T s
D — Q—O — m — 15

consistent with what we learned above.




Example 3: An antenna designer comes up with a model that has a gain function spec-
ified as
Dsin?f, 0<6< 5

0, othewise,

G(Q, qb) - {

where D is the antenna directivity. Determine both D and the beam solid angle
Q.

Solution: Since the solid angle integral of G(0, ¢) has to equal 47, it must be true that

27 /2
/ dQG (0, ¢) = / do df sin 6D sin® 0 = 4.
$=0 =0
It follows that
/2 /2
2D dfsinfsin?f = 4nr = —D (dcosf)(1 — cos* ) = 2
6=0 6=0
from which we get
2 2 2

= - = =3,
feozﬁ/Qdcos (1 —cos?f)  (cosf — <50 2/2 1—3

This is twice the directivity of the short-dipole (which makes sense because half
the gain function of the short dipole is missing from the gain of this antenna).

As for the beam solid angle, it is
O — 4 Arw
o D - 3 9
which is half the solid angle of a short dipole (again for the same reason).




11 Beam pattern, wave interference

In this lecture we will see how antenna beams can be “patterned” by us-
ing interference effects of fields radiated by multiple dipoles or dipole-like
elements.

e Let’s recall that the antenna beam is the shape of the antenna gain
function G(6, ¢) that can be depicted as a surface plot in 3D.

Also
A G(0,¢) [(E x H)|
D =G0, )mn =—=— and QO:/dQ —/dQ
(0 ) =5 G0 ) 1B % 1) [yes

as well as

E 2 ~ —ikr

(E x H)| = L] —, Ey = jn, Lkl sin 0%
2770 47'('?“

for z-polarized antennas and elements.

— With ¢ = L/2 the above equations would represent a short dipole.

— An antenna system constructed by an array of such dipoles would
also be represented by the same equations, but with a different

¢ =10(0,¢) (to be determined).



e The design and analysis of multi-element or multi-dipole arrays are
facilitated by the linearity of wave solutions of Maxwell’s equations:

— If radiators J; and J produce radiated wave solutions E; and
E,, respectively, then a radiator aJ; + 8J9 would produce a wave
solution oy + SE, with arbitrary (complex) weights o and £.

— By induction, the above principle of superposition can be extended
to n elements.

Note that this superposition principle applies at the level of fields rather
than power. This is similar to superposition principle applying at the
level of voltage and currents in circuit analysis.

Superposition of wave fields can produce resultant wave fields with
enhanced or reduced wave amplitudes as a consequence of interference
effects.

— A constructive interference occurs at locations where the waves
being superposed are “in phase”, meaning that the phasors repre-
senting the wave fields are complex numbers having the same angle

——fi.ew 4113232211151.
— A destructive interference occurs where the waves being super-

posed are “out of phase”, meaning that the phasors representing
the wave fields are complex numbers having an angle difference of

+180° — i.e., ZEy = ZE; £ 180°.

If
J, - [ME] = E,

and

J, - [ME] = E,

then

(131—%[332 — II!EI — af§1+-ﬂf§2

Constructive Destructive
interference interference



With a judicious choice of the locations and relative amplitudes of the
radiators J; and Jo, it is possible to arrange for oE; + BE; to ex-
hibit constructive interference in desired beam directions — that is the
essence of antenna beam design and designing high directivity antenna
systems.

— One final detail before showing some examples: the calculation of
the superposed wave fields is considerably simplified at distances
r to the source elements that far exceed the largest distance sep-
arating the source elements.

Example 1: Two 2 polarized dipole antennas with equal input currents I, are located
at (0,0,0) and (0,0, d). Find the phasor expression E(r) representing the super-
position of the fields radiated by each dipole individually. What are the maximum
and minimum values of the field intensity |E(r)| as compared to intensity [E(r)|
of the field due to the dipole at the origin?

Solution: First, the dipole at (x,y, z) = (0,0,0) has a wave field phasor

—jk?‘ ~ e_jk|r| ~
0 = jn,l,klsin 6 0.
47r|

~ €

E;(r) = jnol,klsin 0 -

The field phasor of the second dipole at (z,y, ) = (0,0, d) is a shifted counterpart
of E1, namely

e_jk|r_2d| A

/
4rclr — zd|

Ex(r) = Ei(r — 2d) = jn,I,klsin 6’




where the angle ' is the angle between vectors Z and r — Zd (see margin) such

that X
_(r—zd)
r — 2d

When both dipoles are “on”, the total electric field phasor is

= cosf'.

—jklr|

e
b+sing S
arpe Y e — 2]

~jkle—zd]
0.

~ €

E(r) = E(r) + Ey(r) = jn,I,k{[sin 6

This superposition field phasor can also be expressed more compactly as

~ e_jk|r| ~ Slnel ‘r‘ e_jk|r_2d| A~
E(r) = jn,1,klsind 0 : - . ',
(x) = Jn S 47r|r| 9+ sinf [r — 2d| eiklrl |
from which it follows that
sing |r| e dklr—zdl

E(r)| = [Ei(r)]|0 +

/
sinf |r — 2d| eiklrl |
From this result it is evident that |E(r)| can be at most twice [E;(r)| when
the primed term on the right approaches € (constructive interference), but it
can also vanish when the primed term on the right approaches —6 (destructive
interference).




Example 2: Simplify the superposition field

. —jklx|
E(r) = Ei(r) + Ex(r) = jn,I,klsin I

10+

sinf |r| e dklr—2dl
. | lA . ']

sinf |r — zd| e7kIr

from Example 1 by making paraxial approximation in the expansion of [r—Z2d|

in relation to |r|. From the simplified expression, find the effective length Cey

of the two element antenna array of short dipoles by forcing E(r) to have the
standard form of a Z-polarized radiation field.

47r|

Solution: Making paraxial approximation in the expansion of |r — Zd| in relation
to |r| amounts to having |r| = r > d so that vectors r and r — 2d can be regarded
as being parallel — under that condition we can use 8 = 6, 8’ = 6, and

lr — 2d| = |r| — dcos@.
Then, the total field phasor simplifies as
; ksinge g
E(r) = jn,l,klsin——0]1
El(r)[l _}_ejkdcosﬂ].

‘I“ 6—jk(|r|—dcos€)|

lr| —dcosf e ikl

Q

Alternatively,
e_]k|r| N

E — ‘Olokfl jkdcos@ _: 0
(r) Jnolok (| +ev | sin e

Cegy
from which we have .
Eeff — f[l + ejkdcosﬁ]

for the effective length of the array in terms of the effective length ¢ = % of the
short-dipole array element.




Example 3: For the two-element antenna array of short dipoles examined in Examples
1 and 2 with field phasor
e_]k|r| N

0

drlr|

E(r) = jnolok ([1+ e sind

ey

and effective length |
Eeff — g[l + ejkdcosﬂ]’

determine the gain function in terms of array directivity D.

Solution: For any linear polarized antenna we can write

where function f(6,¢) has a maximum value of 1 and is proportional to
|0cfrsin6|* where 6 is the angle measured from the element axis. For our two-
element array described above we have

f(0,9) |€effsin«9|20< |1+ejkdcose\2sin29

i1 i1 i1 )
|e]2kd6059(632kd0059+6 ijdCOSH)‘281n20

|ej%kdcost9‘2|ej%kd6059 +

_s1 .
e ]decosﬁ‘Z SlIl2 0

1
x cos2(§kd cos 0) sin” 6.

The function on the right maximizes at a value of 1 when 6 = 90° — see its polar
plot in the margin for d = %, d = 2\, and d = 8. Therefore, the gain of our two
element array (for all possible d) is

G(0,¢) =D cos%%kd cos 0) sin” 6.

Polar plots of G(6,¢)/D for
two-element array (compared

to the short-dipole, shown in
black):

Question: which of the above
arrays has the largest D and
smallest 2,7

Explain qualitatively.



Example 4: For the two-element antenna array examined in Examples 1-3, with the
gain function

1
G(0,¢) =D COSQ(§]€d cos 0) sin® 6,
determine all angles 6 for which G(0,¢) = 0 if d = 2.

Solution: Clearly, G(#,¢) = 0 at § = 0° and 180° because of sin?# factor. But also,
because of factor cos?($kd cos6), we have G(6, ¢) = 0 for all § for which

1
5kdcos€ = g(2n +1)

where n = 0, 41,42 ---. This condition can be satisfied when

A2
2n+1) = (2n+1) = M2 o0 4 1)

=d d
for all integers n such that the right hand side is bounded by -1 and +1. For
d = 2\, this condition reduces to

™

kd

cosf =

o+l 113

A2 3
COSQ— —(2n+1) 4 {_Z,_Z,Z’Z}

2\

So, we have

3 1
G(0,¢) = 0 for #—0°, cos™! 1= 41.41°, cos™? 1= 75.52°,

cos ! _Tl = 104.78°, cos™* _TS — 138.6°, 180°.
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e The patterns shown for the two-element array in the margin illustrate
that larger the element separation d, narrower the angular width of the
mainlobe. d=2

— However, the number of sidelobes also increase with d, so there 7/0 \Z N \0
is no substantial directivity increase with distance d because of W

that (because of power diverted into the relatively large intensity ;_ 9y
sidelobes). :

— The remedy is to have multiple-element arrays analyzed next.

e In the two-element array the distant field, in parazial approrimation,
was found to be

E(r) = E|(r) + Ey(r) = E;(r)[1 + e/Fdes?]

after using Ex HY

~

EQ(I‘) ~ El (r)ejkdcosﬁ.

e For a 3-element array with element locations (0,0,0), (0,0,d), and
(0,0, 2d) this result can be extended as

E(r) = Ei(r) + Eo(r) + Ey(r) = By (r)[1 + ehdeost | oi2hdeost)

and, for an N-element array, with elements at (0,0,nd) for n in the
interval 0--- N — 1, we can write

=
E(r) = B (r)[1 + e/fdeost 4 gi2hdeosd 4 oi(N=Dkdcosd) dedsO

8



— These superposed field expressions in the antenna far-field imply
an effective length of

N—-1
geff ¢ Z(ejkdcosﬁyz.
n=0

e The sum on the right is called array factor (A.F.) and we see that the
effective length of the array antenna is the product of the effective
length ¢ of an array element and A.F..

e We can write the gain of the N-element array (once again as)
The same interference prin-

— ciple governs N-element ar-
G(Q, ¢) Df(@, ¢)’ rays: at locations where field
phasors from individual el-

where ements have the same an-
N-1 gle, constructive interference

0 x |¢ sin @ 2 _ / 2 E : ejkd cos\n |2 SiIlQ 0 takes place, and the radiation

f( ,Qb) ‘ eff ’ ’ ‘ ’ ( ) ’ field of the array is strong.

n=0 At other locations where field

phasors from individual el-

and has a max value of 1. The A.F. maximizes at a value of N at
ements cancel one another,

6 = 90° and thus it works out that the field of the whole array
is weak.
N-1
2 1 jkdcost\n |2
G(9, ¢) = Dsin Q\NZ@ )72,
n=0

— To simplify this gain formula we note that

N-1

s=1l4+wtw +---+w = sw=wt+w+---+w N

+w,



and, therefore,

N_q w

sfw—1)=w

e Applying this summation formula for s with w = e/*?5 we obtain

N-1 — eijdcosﬁ —1
_ cosO\n __
AF. = Z(ej )= et 1
n=0
Now,
N—-1 ;
. |eij:dcos€ _ 1|
’AF’ _ ‘ <€jl{3dCOS¢9>n‘ _ .
yejkdcosﬁ _ 1‘
n=0
_ ‘6j%kdcose(6j%kdcos«9 . e—j%kdcos@” _ \sin(%kdcos Q)‘
|ej%kdcosﬁ(ej%kdcosﬁ _ 6—j%kdcos€)‘ ‘Siﬂ(%kdcos 0)‘ .
The upshot is,
sin?(Skd cos 6)

G(0,¢) = Dsin® 0
(6,¢) o N2 sin*(5kd cos )

for an N-element array with a physical size Nd.

-0.4

N =16, Nd = 8\

— Plots of G(0,¢)/D for d = 4 and N = 2, 4, 16 are shown in

the margin. Note the reduced sidelobe levels (you can barely see

—_—
e -

them) and how larger N results in larger directivity D.

10



12 Interference, antenna arrays — cont’d.

We continue our study of interference effects and antenna arrays.

e Beam patterns of N-element antenna arrays examined last lecture were
isotropic in ¢ direction — the main effect of increasing the array size Nd
appeared to be narrowing the mainlobe of the pattern in 8 direction.

e These so-called broadside arrays — meaning that they mainly ra-
diate in the “broadside direction” of the “array axis” — are good for

broadcasting purposes at relatively high frequencies 5= in the FM band
(~100 MHz),

— where array sizes Nd, in excess of many \’s, become practicable
(as opposed to in AM band where > ~1 MHz and A ~ 300 m).

e They may also be used as “elements” of arrays built along x- or y-axis
directions which we will consider next.

— In that case it will be possible to produce antenna beam patterns
anisotropic in the azimuth plane (in ¢ direction).

— We will also consider phasing the element input currents so that
the mainlobe of the beam can be steered into desired directions in
the azimuth plane.

E x H*

New vocabulary:
— Broadside arrays
— Array axis

— Broadside direction



e Consider an array of elements polarized in z-direction positioned along
the x-axis as shown above. Our initial analysis of this array will assume
equal input currents [, for all the elements. Let

~ e_jk|r|

E()(I') X

7] denote the field at the observation point r due to the element at the origin.
r

— Then, using the paraxial approximation, the field phasor at a dis-
tant observation point due to the next element at (d,0,0) can be
expressed in terms of Ey(r) as

El(r) ~ Eo(r)ejkdcosex
where 6, is the angle between vectors r and z, i.e.,
cosf, =7 -2 = (sinf cos ¢z +sin O sin ¢y + cos 02) - & = sin b cos ¢,
known as a direction cosine.

2



— Likewise,
Es(r) = Eo(r)e/* % ete | so that,

— For an N-element array;,

E(r) — Eo(r)[l i ijdcos% + eijdcosex 4o+ ej(N—l)kdcoséx}.

e The field expression above is identical in essence with the field expres-
sion for the N-element array examined in the last lecture except for the
replacement of cos@ by cosf,. Therefore, assuming that Eo(r) is due
a short dipole (so that ¢ = % is independent of direction), we obtain
the A.F. for our new array by exchanging cosf by cos6, in the A.F.
obtained in the last lecture — by that procedure we arrive at

sin®(5-kd cos 6,)
N2 sin?(3kd cos §,)
sin?(Skd sin 6 cos ¢)
N?sin®(5kdsin 0 cos ¢)

G(0,¢) = Ksin’0

— Ksin?0

We have at last obtained a gain function that does actually depend on
both 6 and ¢. The scaling constant K above is to be determined by
requiring [ GdQ) = 4.

— Even more complicated gain expressions would be obtained if the
array elements were themselves arrays (like those examined last
lecture) having angle dependent ¢’s! (see HW problems).



Phased array:

e Next let’s examine what happens when the element input currents are
not identical, but follow a progressive phase pattern with

I, = L,e ™ for n-th element located at (nd, 0,0)

where « is a phasing increment specified in radians.

In that case — since E,(r) o< I,, — we would have a phased array
with element field phasors

Ei(r) ~ Eo(r)e/Fdeoste=a) = E(r) & Ey(r)e/2kdcosta=a) = ete
and an array gain function (again, assuming short-dipole elements)

sin?(5 (kd sin 6 cos ¢ — )
N?sin(5(kdsinfcos ¢ — )

G(0,¢) = Ksin®

where, once again, constant K is to be determined by requiring [ GdQ) =
47 — demonstarted in Mathematica notebook demo shown in class.

4



a = 0: Broadside array

e On 0 = 90° plane we have

G(90%, ¢) =

1.0,

which leads to azimuth plane patterns (G/K) shown in the margin
shown for d =2, N =16, and o = 0, T T, and 7 radians.

%: Steered beam:

I
-0.5

-1.0

5: End-fire array

Yy

101

051

47
o Also, 3D plots of G(0,¢)/K for d = 3, N = 16, and a = 0 and § _ _
radians are shown below:
o =
Question: The broadside pattern shown on the left is clearly a “fan beam” — how |

would you make the “fans” narrower (in order to increase D) in 6 direction?

5

I I x
0.5 0.5 1,0

—0.5




e Our discussion so far have focused on 1D arrays.

— One class of 2D arrays consist of 1D arrays having other 1D arrays
as their elements, in which case their gain functions can be formu-
lated after multiplying the array factors of two 1D arrays and the
effective length of the smallest element of the arrays.

— We have shown examples illustrating how antenna beams with

relatively small solid angles €2, and directivities D = ;“)—7; can be
generated.

— We have shown how phasing can be used to steer the antenna
beam patterns.

e Interference effects which are fundamental to antenna array design are
mainly sensitive to

1. antenna locations, and

2. phases of antenna input currents.

The next example examines these parameters in more detail.

Example 1: We have two identical g-polarized short dipoles. We want to “place” them
and “phase” their input currents in such a way that no power is radiated in 4=z
direction and there is a gain maximum in —x direction. Determine the required
positions of the dipoles and the relative phases of their input currents.




Y

02/ dﬁo%%

(—xm(),O) el / (x07070> ]

Solution: Let’s place the two g-polarized short dipoles at (0,0, 0) and (d, 0, 0) as shown
above and drive them with input currents I; and I, respectively. For I, = I;e77¢,
the field phasors of the dipoles at an observation point (z,,0,0), x, > d, will
vary as

E; oc e 7% and Ey o e I Iko—d) — g=ikogi(kd—a)

having identical proportionality constants. Likewise, at an observation point
(—2,,0,0), x, > d, we will have field phasors

E; oc e 7% and Ey oc e I H@otd) — gikvog—jlkd+a)

Now, in order to have destructive interference between E, and E, at (20,0,0) we
need to have |
k=) — 1 = kd—a=r.

Also to have constructive interference between E; and Ey at (—x,,0,0) we need
to have |
e /) =1 = kd+a=0.

Adding and subtracting these equations we find that

kd:g and a—-7.

[\)




Thus
d:_:2T_7T:

This result makes sense because, with I; lagging I by 90° of phase, and E, traveling
an extra % compared to Es to lose an additional phase of 90°, E; ends up being

180° out of phase with E; at (x,,0,0), which is the condition for destructive

interference.
Conversely, with I leading I; by 90° of phase, but E, traveling an extra % compared

to E; to lose that phase lead of 90°, Ey ends up being in phase with E; at

(—x,,0,0), which is the condition for constructive interference.

Example 2*: (Difficult example) Obtain the gain function G(6, ¢) for the 2-element

array examined in Example 2.
ExH

=h
I
>

=

S

0, 7/ (24, 0,0)

and d = 2, we have in the antenna far-field (i.e.,

<_I07 07 0)

Solution: With Iy = I1e™7® a = —




the region where paraxial approximation justified)

E(r) = Ei(r)(1 + e ety = By (r) (1 4 e/2(c0sfat1)

where ,
. . eI
Ei(r) = jn,I1klsinb, - g,.
Consequently,
G(0,¢) =Df(0,0)
such that

F(8,6) o [0 sin 6, 2|1 + e 3(osbt D)2
and is normalized to a peak value of 1. This is compatible with

|1 + ej%(cosﬁgﬁ—l)|2

4
2+ e 5 (cos Ox+1) + e—J5(cosbz+1)

G(0,¢) = Dsin0,

— Dsin? 0,

RN

1+ cos(5(cosl, + 1))

2

= D(1 - cos®6,)

= D(1 —sin®*#sin? ¢)

1+ cos(5(sinfcos ¢ + 1))

2
A 3D plot of G(0,¢)/D is shown in the margin.

-1.0




13 Arrays and feed networks

Performance of antenna arrays depends on our ability to feed the array ele-
ments with input currents having accurate phase relationships. This can be
accomplished by using appropriately designed “feed networks” consisting of
transmission line (TL) segments. We continue our study of antenna arrays
with examples illustrating feed network design issues.

Example 1: Consider a 4-element phased array with Z-polarized short dipole elements,

progressive phasing with increments «, and element-to-element spacings d = %
along the z-axis. It is desired that the array has a gain maximum on 6 = 90°
plane along ¢ = 45° directions. Determine « such that I = Iye7/® and suggest
a TL feed network that can be used to distribute the required input currents of

the array elements.

Solution: Let E(r) denote the far-field phasor due to the array element at the origin.
The phasor due to the element at (d,0,0) can then be expressed (in the far-field)
as

El(r) _ :EO(r)e—jaejkdcos93E _ Eo(r)e—jaejkdsiné‘cosqﬁ.

Since we are interested in # = 90° case, we can simplify this as
El (I‘) _ Eo(r)ej(kdcosgb—a).

Since we want constructive interference in ¢ = 45° direction, we will demand

that .
ellhdeoso=c) — 1 — o = kdcos¢ for ¢ = 45°
l.e,
21\
o= %5 cos45° = % rad.

E x H*

E=0E,



Thus, the required current inputs of the array elements are
I, =Ile "VZ, n=0,1,2,3.

With this phasing, radiation coming from all four elements will interfere con-
structively along the ¢ = 45° direction.

E x H*

Designing the feed network: The required phase delays

21\
o= —7T—cos45O = lrad

A2 V2
to be applied progressively are in effect to compensate for the fact that propaga-
tion distance from element 1 to the observation point (along the ¢ = 45° line)
is shorter than the distance from element 0 by an amount

A
A =dcos¢ = 5008450.

Let’s make the current signal arriving at the input terminals of element 1 travel
on a TL (with propagation speed v = ¢) an extra distance A compared to the
current going to element 0 (coming from the same source) — that procedure,
repeated progressively for all the elements, will produce the required current
inputs .

I, =Ile "V, n=0,1,23,

derived from a common current source, provided reflected waves from the ele-
ments can be avoided.

E=0E,



To avoid reflections from the antenna elements it is necessary to match the antenna
impedance Zp, to the characteristic impedance of the TL (e.g., single-stub tuning).

"Phasing" cables
and loads

Assume that all the elements have been identically matched to a TL with a charac-
teristic impedance Z,. Then we can connect the elements to a common current
source [ via a corporate-ladder network shown in the margin and have

]S —in - Quarter-
[n - _56 jnﬂ, n:O,l,Q,B. wave tx’'s
~
I
. . . . ter-
The verification of this formula would require the use of quarter-wave transfor- | aave ex's

mation formulae for impedance and terminal voltage and currents reviewed next.

e As shown in the margin a quarter-wave transformer with a charac-
teristic impedance Z, transforms a load impedance Z;, into an input

impedance Z2 Quarter-wave transformer:
Ly = =2
1 ZL
Also, an input voltage V;, is transformed to a load current
‘/;n n
I; = —9— r
L 7 5
4
independent of load impedance Zj, while an input current I, is trans-
formed into a load voltage ZinZy = Z;
VL - _jZOIm-

3




Assuming Z; = Z, and applying the quarter-wave transformer formu-
lae repeatedly we note that

. Junction voltage

e
Vvl - _]§ZO;
. Element 1 current
Vvl .(_j%ZO) Is
Ir — —i Y _ __Ss
L ]ZO J 7. 9

. Element n current is then
I, = Ipe 7S = [

as required.

Question: Why did we have to assume Z; = Z, above?

Answer: Because otherwise the impedance of the two branches seen by I

may have been different, and we would not necessarily have equal cur-
rents % flowing into the two branches of the circuit.

Exercise: In the diagram on the margin we have a voltage source Vj in series

with a source impedance Z, feeding an array feed network. Determine
I, using quarter-wave transformation rules assuming Z; = Z,.

4

"Phasing" cables
and loads

Quarter-
wave tx’s

Quarter-
wave tx’'s

Loads

Quarter-

wave tx’s

Quarter-
wave tx's



Spatial Fourier transforms of current distributions:

e Consider an array of identical dipoles positioned along the z-axis at
locations x,, = nd having input currents [,, with n in the interval

0,1,---N —1.
e The far-field electric field of the array (in paraxial approximation) is
then
- T I jkd cos 0, Iy j2kd cos 0, Iy J(N—=1)kd cos 0
E(r) = Ey(r)[l +—e¢ + —e +- 4+ —e ]
Iy Iy Iy
N-1 g
_ E “n _gnkdcos 0
o(r)nz:% 7€

so that the array factor is
N-1
AF = _nejkcosﬁxnd’

In ‘

a discrete Fourier transform of the sequence 7. representing the “il-

lumination pattern” of the array into a spatial-frequency domain of
k, = kcosf,.

e Compare the A.F. with the effective length of a single array element
(from Lecture 8) i
(= /@eﬂfcosezdz’

I,
which is also a spatial Fourier transform into the domain k£, = k cos 6.

D



e Therefore the system gain that consists of the products of the A.F.
and element ¢ is in effect a spatial Fourier transform of the “current
distributions” or so-called “illumination pattern” on antenna surfaces
of the system.

— This link will be examined more closely in antenna and imaging
courses starting with ECE 454,



14 Interference zones, plane waves

e Let's examine the radiation field of a 1D array of N = 2M + 1 iden-
tical elements located at (nd,0,0), with n in the interval —M, --- —
1,0,1,--- M having spherical wave field phasors

~ e_jk|r_§7nd| A~

E,(r) = jn,l,klsin 6, ——0,
(x) = o 4rt|r — Znd|

where 6,, is the angle measured from the x axis to vector r — znd such

that .
r—and
cosl, =2z ——.
Ir — znd|

e The total field phasor

of the array will have different types of spatial variations in different
interference zones or reqions:

1. The region
Ir| < —, where L =2Md

is the physical length of the array, is known as Fresnel region or
the near-field radiation zone — in this zone paraxial approximation
cannot be used and the radiation field is highly structured having a

1
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prominent magnitude directly above the array (i.e., for —Md < x <

h
Md) . “_ Fraunhoffer
A region
2. The region
2172 2L Sop
r| 2 — N ey
A S I '
is known as Fraunhoffer region or the far field — this is the zone in 5 meew=2 ¥
. . . . . .. S A A
which paraxial approximation works well, and spherical waves arriving :
from individual array elements merge to become a single spherical wave
of a higher directivity. i i
The concept of antenna beam applies only in the Fraunhoffer region. £ presnel

H region

A beam with a fixed angular width emerges out of the Fresnel region
as Fraunhoffer region is approached, as shown in the cartoon in the

margin (in which an “unphased” broadside array has been assumed in
sketching the far-field beam).

e In addition, it should be noted that

— the region |r| < few A will include strong storage fields, whereas

— for |r| > %, deep in Fraunhoffer region, spherical waves will
“locally” look like plane waves.

We will next examine the transition between Fresnel and Fraunhof-
fer regions and then examine how spherical waves can be treated
as plane waves over limited regions of space in the far-field.

2



as shown in the margin.

e Consider the “phase-delay” of signals arriving from individual elements
of a broadside array on the x-axis to a location (0,0,7) on the z-axis

— Clearly, the sample “rays” shown in the margin connecting different
array elements to (0,0,r) have different lengths even though in
parazial approximation only one length, r, would be assigned to
all them since ndcosé, = 0 for 8, = 90°.

This discrepancy between r and the actual ray length |rzZ —ndz| would
be the cause of the failure of paraxial approximation, except when the
small in radian units).

ray-0
“phase error” caused by the discrepancy is unimportant (because it is

— The exact phase delay along ray-0 is

(I)O = kr
is oc e JkT

since the field phasor arriving along this path from element n =0

— The exact phase delay along ray-M is

Oy =k

L
ri— Mdi| =k

rz——x| =k
2
s o e Jklri-Mdi|

L
2 4 ()2
()
since the field phasor arriving along this path from element n = M




— The maximum phase error made in paraxial approximation is then

z
2 (L ALY
AP = (I)M—(I)():]{? r —|—<§> —]{TT:]{?< r —|—(§> —7’) ‘<0,0,7‘)
L |
= kr(4/1+(=)?—-1). '
1+ (o = 1) __
Note that this phase error vanishes when » — oo. But for a finite “._
r, we have, when r > %, a finite error of about ray-0f \ray-M
AP = kr(y/1+( = )2 —=1)
= T [ R
2r
1, L o L*  w2L*
~ kr(l )= =
) =T T s
using the first two terms of the binomial expansion of 4/1 + (2L7)2

— Clearly then, if we were to take

212

2172
—<1 < rz
AT

;) then we would have A < Z rad,

which is a small enough of a phase error that can actually be
neglected (in particular in multiple-element arrays where the phase

errors due to a multitude of other elements will be even smaller
than § rad or 22.5%).



The analysis just concluded indicates that the border between
Fresnel and Fraunhoffer zones can be taken as

2L
T~ ——
A 7
the so-called Rayleigh distance. d
3 4
For the N-element broadside array being considered the far-field gain % region o
function (adapting from Lecture 12)
(SO | 2L ,."'2L2
o sin*(5kdsin 6 cos ¢) Y
G(0,¢) = Dsin” 0, — T : S S
NZsin“(5kdsin 0 cos ¢) T =Y
. L 4
The array gain
sin‘(5 kdsin 0
G(6,0) =D ,(221 , ) ; ;
NZsin®(zkdsin 0) , !
on ¢ = 0° has its “first nulls” around the mainlobe at angles 6 satistying P Tesien
N 27/ A
Ekdcosﬁn = % Nd sinf, =+n = Lsinb, = £,
L

so that “beam-width between first nulls” is

2\
BWFN =20, ~ —
L

for L > .



e Approximately speaking, the “half-power beam width” between the \

points of D/2 in the gain-pattern works out to be

A
HPBW =~ —BWFN = —
W 2 L

in radian units.

Multiplying the HPBW with the Rayleigh distance we find that

°I2 A 2I2
HPBW x 2 = 2 22 _of
“N LA !

which indicates that at the border of Fraunhoffer region the “antenna
beam” between its half-power points is about twice as wide in the trans-
verse direction as the physical size of the array, as shown in the cartoon
in the margin. This is a “physical picture” that should be kept in mind
(and can be easily extrapolated into Fresnel and Fraunhoffer regions
when needed).

— Note that increasing the array size L causes:

1. A larger Rayleigh distance,
2. A thicker column of radiation field in Fresnel region,

3. A narrower HPBW in Fraunhoffer region.

The inverse relation between antenna size L and the HPBW, that can
be summarized as

HPBW x L = \,
6

Fraunhoffer
region

------
- ~
- ~

[ %
[} ]
s -

. Fresnel
H region




is reminiscent of “uncertainty relation” from quantum mechanics as well
as the relation between bandwidth and impulse response length of filter
circuits — underlying all such relationships is of course a Fourier trans-
form pair (between frequency response and impulse response in filter
circuits; between momentum and position wave functions in quantum
mechanics; between effective length function and spatial current distri-
bution in antennas).

In the Fraunhoffer region, we can express the radiation field of a z-
polarized antenna or antenna array as

6—]’]{;7’ .

E(r) = jnol,kles (6, ¢)sin 0——0.

r
— This “globally” spherical-wave field can be considered a plane-wave
field “locally” in any neighborhood of
r=r, = (3707 Yo, Zo) = (Tm 0,, ¢0)
within the Fraunhoffer region.

— The expression for plane-wave approximation in the neighborhood
of r =r, is simply

N —Jktor
E,(r) = jnokl.s(6,, 6,)sin 9064 0,
To
where
N Iy
Ty = —.
]I'O‘

)
Py o S T
s

-

“a
sssntupeensnnmman
“a

-

Fresnel
. region




This phasor expression, that approximates the spherical wave pha-
sor in the neighborhood of r = r,, and is identical to E(r) at
r = r,, is recognized as a plane wave because it has the same
numerical value (as a complex vector) on planes of constant phase

defined by

kr,-r = const.

perpendicular to unit vector r,. This is a plane wave propagating
in direction 7, and is assigned a wave vector

k = kr,.

More on the wave vector concept later on...

e Notice that the plane-wave field Ep(r) can also be expressed more com-
pactly as

E,(r) = 90|E(r0)|e_jkro'r,
disregarding a possible phase offset (position independent) equal to the
angle of 71,05 (04, o).

The deviation of this plane-wave field from the spherical-wave field
E(r), as r departs from r,, will be dominated by the discrepancies
in phase variations of E(r) and E,(r), rather than the much slower
variation of |E(r)| with respect to |E,(r)].

That is, the wave-front curvature of spherical E(r) will be the main
cause of the differences that emerge between E(r) and E,(r) as r de-
parts from r,.

-

s
R T

+ Fresnel
. region




We next determine the size of a region around r = r, where this wave-
front curvature can be neglected. Our criterion will be to keep the phase
discrepancy between E(r) and E,(r) due to wave front curvature sufficiently
small.

e For simplicity, let
r, = 7ol

and compare the phase delay of phasorsE,(r) and E(r) at r = r, + &x.

— The phase delay of E,(r) at r = r, + &z is

>
g | ;
¢, = kr, rff\ \Q"
since r, + zx and r, reside on the same constant phase plane of . i
E,(r) (see margin). A R A g
— The phase delay of E(r) at r = r, 4+ 2z is ‘HPBW2 ------- N
L, y
O = k|r,y + x| = k/r2 + 22
— The phase discrepancy between E,(r) and E(r) at r = r, + i % f
because of wave front curvature is then Fresnel
AP = & — P, =k\/r2+2?— kro—k (/12 + 2> —1,)
122 2m a7 (2x)?

Q

kro(1 4+ =2 — 1 Sl
rol +2T2 ) = N 2r, 4 M,

using the first two terms of the binomial expansion of /1 + f—;

9



— Clearly then, if we were to take

(22)°
AT,

L1 & 2x < /Ar, then we would have A® <« %rad.

Thus, plane-wave approximation of a spherical wave about

position r, will have negligible errors within a box with di- »

. * \ .:
mensions less than v/ Ar, known as Fresnel size. - \Q"
To y
— Note that Fresnel size, the size of the region where plane wave oL S
. . o SERREEEL ELLLL w2
approximation is acceptable, grows as the square root of distance £oA
r,. Smallest meaningful value of Fresnel size is for R I Sy A N
|‘ L :
217 L L4 b
To === (Rayleigh distance) s P

in which case

Eigl
R T

H region

Fresnel size = \/Ar, = V2L < 2L = beam size, J1 Fresnel

indicating that the antenna beam is always (at all |r,|) broader
than a Fresnel size and thus only portions of an antenna beam
can be well represented by a plane wave. A superposition of many
(an infinite number in fact) plane waves would be required for an

accurate representation of an entire beam.

Example: For A = 10 m (30 MHz) and r, = 100 km, we have \/Ar, = 1
km. So at a distance of 100 km away from an HF' source the wave field
looks planar over a neighborhood of about less than a km in extent (or
about 100 wavelengths).

10



15 Plane-wave form of Maxwell’s equations, prop-
agation in arbitrary direction

Having seen how EM waves are generated by radiation sources and how spher- % —]

ical TEM waves develop a “planar” character over increasingly large regions —

as they propagate away from their sources, it is time to shift our attention — “L........J A S

. . . . K PPN

to propagation and guidance phenomena using the plane-wave formalism. % e[ .
Perhaps the most “practical” rationalization of this switch from spherical ?HPB“ i

to plane-wave emphasis is that waves produced by compact sources invariably kS .

“look” planar at the scales of practical receiving systems (that will study near

the end of this course) situated afar. I
e We wish to study wave solutions of Maxwell’s equations exhibiting the : S

planar phasor form }5’;’;’;:9: } ’;’;}:: ;
E = E,e /X" = ¢ e /kT 0

and time-domain variations

Re{Ee™'} = Re{E,e/“ k1)1
= é|E,|cos(wt —k-r+ LE,)
where wave vector k is to be found in compliance with w and Maxwell’s

equations according to some specific “dispersion relation” including the
details of the propagation medium.



— For simplicity, the above phasor has been declared to be linearly

k - r = const.

polarized. Circular or elliptic polarized wave fields can be con-
structed later on via superposition methods.

e Linearly polarized wave field phasor above can be expanded as

E = Eoe_jk'r — Eoe_j(kx$+kyy+kzz)

assuming a wave vector

k = (ky, ky, k) = &k, + Gk, + 2k

expressed in terms of its projections (ky, ky, k.) along the Cartesian
coordinate axes (x,y, z).

e A special case we are familiar with is
ke =k, =0, k. >0, when k = k.2 = k2 and e /*" = ¢ /¥

as in plane TEM waves traveling in +z direction having a

2m w
wavelength A = = and propagation speed v, = —

— Likewise, the case
ky=k.=0,k, >0, when k = k,& = ki and e /5" = ¢ /"

corresponds to plane TEM waves traveling in 4z direction with
the same wavelength and propagation speed.

2



e The general case with non-zero components (k, k,, k) corresponds to
a plane wave propagating in the direction of unit vector

_k (kxakakz> . 21
== Wherek:yk\:\//~<:§+/~c§+k§=7

and also having the same wavelength and propagation speed as above.

x>

Wavelength A\ now describes the shift invariance of the wave field in
spatial k direction, i.e., the propagation direction.

k- r = const.

Example 1: A plane wave electric field phasor is specified as

E _ 26—j(37rx—47ry) X

m

Determine the propagation direction k, wavenumber k = k|, wavelength A\ = 27”

and wave frequency f = 5= assuming a propagation speed ¢ = 3 X 10% m/s.

Solution: Contrasting E with e (=2 tky+k:2) e note that
rad rad
ky=3m—, ky = —4m—, k., = 0.
m m
Hence, wave vector
rad

and wave number

d
k=[] = \ /2 + k2 + k2 = /(307 + (4m)? + 0% = V252 = B~

m




The propagation direction is specified by the unit vector

~ k3w —A4ny
k=—-=———=>=0.62—0.8y.
k; - 0.6 — 0.8y
The wavelength is
2T 27
A=—=—=04
k b H
Since
W
c=v,=—
Pk
in general, it follows that
g rad

w=ke=5mrx3x10% =21 x 7.5 x 108 —
S

and N
f= 5= 750 x 10% Hz = 750 MHz.

™

e Based on what we learned in ECE 329, we recognize that the wave
analyzed in Example 1 must have been propagating in free space.

e What are the constraints on wave vector k for plane waves propagating
in arbitrary media?



To answer the above question, we will return to macroscopic-form
Maxwell’s equations written in phasor form (see margin) and ex-
amine under which conditions phasor solutions

x e—jk-r

can be applicable for all the field quantities in the absence of source
currents J and their accompanying p.

e First, we note that in view of relation

~

D:eE,

we can have plane-wave solutions of the form

~

D =D, %" and E = E, e /¥T
if and only if € does not depend on position r (why?).

e Likewise, relation

B =uH,

implies plane-wave solutions

B = B,e /%" and H = H,e /k*

if and only if u does not depend on position r (why?).

V-D =)

V-B =0
VxE = —jwB
VxH = J+jwD

where (constitutive rela-
tions)

D = E
B = uH
J. = oE.

k - r =const.




e In a homogeneous region where €, u, and o are, by definition, inde-
pendent of r, plane-wave solutions of phasor-form Maxwell’s equations
given in the margin become possible provided that

—jk-D = p

—jk-B = 0
—jkxE = —jwB
—jkxH = J+ jwD.

We have obtained these vector-algebraic relations from phasor-form
Maxwell’s equations in the margin after replacing the vector-differential
operator V by the vector-algebraic operator —jk.

The justification of this simple procedure is as follows:

If

D = Doe_jk'r = DOG_‘j(k‘Tx_l_kyy_‘_kzz) = (DZEOJ Dy07 Dzo>e_j(kx$+kyy+kzz)

then
5 o o0 0

_ —jkxone_j (kpa+kyy+kzz) jkyDyoe_j(ka+kyy+kzz) . jk‘zDzo@_j (kpr+kyy+k,z)

—j(kyx+kyy+k —j(kyx+kyy+k,z —j(kyx+kyy+k.z
one j(kg yY ZZ)JDyOe J(kg yY Z)aDzoe J (ke yY z))

~

— —J(ij7 ]{:y, k‘z) . (on, Dy07 Dzo)e_j(kx$+kyy+kz2) — _Jk . D
Likewise, if
E — Eoe_jk'r _ Eoe_j(kxl'—l-k‘yy“‘kzz) — (ESL’O7 Ey07 Ezo)e—j(k‘xl’—i—k‘yy—l—k‘zz)

6



then
o 0 0

VxE =

)

Exoe—](k‘x:ﬁ—l—k‘yyjtkzz)’ Eyoe—](k‘xm—l—k‘yyjtkzz) EZOG_](kxx+kyy+kzz))

— (—jkxa _jkya _sz> X (Exoe_j<kxx+kyy+kZZ)7 Eyoe—j(ka;x—i—kyyj%zz), Ezoe_j(kxx+kyy+kZ2))

= —jk x E.

The vector-algebraic relations above, repeated in the margin (after cancel-
ing out some common terms), are known as plane-wave form of Maxwell’s
equations.

e Plane-wave form ME in the margin provide us with the constraints such
plane waves satisfy in various types of propagation media categorized
according to €, u, and o.

~

e Focusing first on the case p = J = 0 and ¢ = 0 (source free and
non-conducting), the equations simplify as

k-D = 0
k-B =0
kxE = wB
—kxH = wD.

The first two constraints tell us that wave vector k is necessarily or-
thogonal to both D = €E and B = pyH.

— Hence, the plane waves satisfying the above equations will be

TEM.

Plane-wave form of
Maxwell’s equations:

—jk-D = p
k-B 0
- )



e Cross-multiplying the third equation with k and substituting from the
fourth equation we get

k x (k x E) = wuk x H=wu(—wD) = —uew’E.
But we also have
kx(kxE)=—-(k- -kE
since vectors k and E are perpendicular as shown in the margin —

cross-multiplying E twice by k = kk produces —E times k% = k - k!

— The above lines are compatible if and only if
k-k=uwpe = kok = land k = w4/ €,

which is the dispersion relation of TEM plane-wave solutions of

Maxwell” equations )
~ e JwynekT

with

A ~ A ~

k-E=0 and £-H = 0.

as well as (according to the last two equations in the margin)

kxE - -
. and E=nH X k with n= ay
n €

ﬂ:

e TEM plane wave solutions obtained above correspond to undamped
uniform plane waves when the wavevector k obeying the dispersion
relation k - k = w?pe is real valued.

8

Also, the vector identity
Ax(BxC)=(C-A)B—(B-A)C

leads to the same result.

Plane-wave form of
Maxwell’s equations:

k-D = 0
k-B =0
kxE = wyH
—k x H = weE.



e Same results also describe damped plane waves and/or non-uniform
plane waves with complex valued k:

— Damped waves: if i is real but k = w 1€ is complex valued with
a negative imaginary part - e.g., in Ohmic conductors

— Non uniform waves: if /2:, obeying k-k=1isa complex valued
unit vector - e.g., with surface waves, evanescent waves ... to be
studied over the next few weeks

e Example: Non-uniform plane waves with real valued k - k

— Consider k - k = w?u,e, where the right hand side is real valued
and equal to the square of w/c.

— Let k =k, + jk; where k, and k; are real valued.
— Then k -k = (k, - k, — k; - k;) + 52k, - k; = w? 1€, leading to the
constraints
k, -k — ki - ki = w’pio€,
k. -k, =0.

— For instance k = (k,, k,, k.) = (27,0, —j7) will comply with these
constraints with k, = (2m,0,0) and k; = (0,0, —m) and w? €, =
372 | describing a non-uniform plane wave with a phasor

e—jkT _ 6—](27m—j7rz) _ 6—]27Tx6—7rz



that propagates in x direction with a wavelength of A = 27 /k, = 1
m and decays in z direction ... namely a “surface wave” propagat-
ing along, say, z = 0 surface.

o Translating the wave phasor back to time domain, we see that
it will be described as

Re{e /KTl = Refe /2™ e ™ e/ = 7™ cos(wt — 2m).

10



16 Reflection and transmission, TE mode

e Last lecture we learned how to represent plane-TEM waves propagating
in a direction k in terms of field phasors
) | - kxE
E=Ee /" and H= ——~—
n
such that

n = H, k:kl%, k =wy/pe, and k-E,=0.
€
Such waves are only permitted in homogeneous propagation media
with constant u and € and zero o.

— The condition of zero o can be relaxed easily — in that case the
above relations would still hold if we were to replace € by € + 3%
as we will see later on.

e In this lecture we will examine the propagation of plane-TEM waves
across two distinct homogeneous media having a planar interface be-
tween them.

e With no loss of generality we can choose unit vector  be the unit-
normal of the interface plane separating medium 1 in the region
r < 0 from medium 2 in the region x > 0.

In 1808 Etienne-Loius Malus
discovered that light re-
flected from a surface at an
oblique angle will in general
be polarized differently than
the incident wave on the re-
flecting surface.

This is caused by the differ-
ence of the reflection coeffi-
cients of TE and TM com-
ponents of the incident wave
as we will learn in this lec-
ture. Practical implementa-
tion of the phenomenon in-
clude polarizers and polariz-
ing filters used in optical in-
struments, photography, and
LCD displays.

*... k, k;
.".. ko sin 6
f@l S, 02 -~

Medium 1 Medium 2



e A plane-TEM wave incident onto the interface from medium 1 is as- z
signed a wavevector

k; = k(2 cos by + Zsin )

by taking ¢ to be orthogonal to k; (see margin).

This makes the xz-plane the “plane of incidence” and 6#; the “angle of k1 cos 0
incidence”, and, furthermore,

Medium 1 Medium 2

— if we were to consider the case of E; = §E,e /%™ we would call the
problem a “TE mode” problem, where TE is short for Transverse
Electric field, and transverse is with respect to the plane of inci-
dence.

— if we were to consider the case of H; = yH, e %" we would call the
problem a “T'M mode” problem, where TM is short for Transverse

Magnetic field, and transverse is, once again, with respect to the
plane of incidence.

This lecture we will examine the TE mode, and next lecture the TM

mode. These different modes have different transmission and reflection Medium 1 Medium 2
properties. They are easy to study one at a time, and sufficient in

general since all cases can be represented as a superposition of TE and
TM cases.



TE mode reflection problem:

»
e In TE mode reflection problem, the plane-wave field phasors incident — ~w. ) k, .¥
on the interface between medium 1 and 2 — x = 0 plane — are specified /’9 o\ kosing
2
as . : e
. o - k;, x E;
E, = E,e /%" and H, = Zk: L
1" k1 cos 0y
where
kl' _ k’l (i‘ COS 91 _|_ ZA Sin 91)7 Medium 1 Medium 2
and
W 1 !

/€1—Ul, Ul_\/ma = e
— The plane-wave field specified above satisfies Maxwell’s equations
in the homogeneous medium 1 occupying the region x < 0, but if
there were no other fields in media 1 and 2, Maxwell’s boundary
condition equations requiring the continuity of tangential E and
H across any boundary not supporting a surface current would be
violated.

In order to comply with the boundary condition equations we postulate
a set of reflected and transmitted wave fields in media 1 and 2 as follows:

e In medium 1 we postulate a reflected plane-wave with field phasors

i | . k. xE,
E, = yAEOFLe_jk”'r and H, = X X B
kim

)

3



where
k, = ki(—2 cosf; + Zsinby).

In medium 2 we postulate a transmitted plane-wave with field pha-

Sors _
_ . ~ k; x E
E;, = @EOTJ_G_jkt'r and H; = ! t,
Fampo
where
ki = ko(Z cos Oy + Zsinby).
and
w 1 142
ko =—, o= 2=\ —

9 9 — .
(%) vV H2€2 €2

To justify our postulates and determine a set of reflection and transmis-
sion coefficients I' | and 7, — defined in terms of electric field compo-
nents — we will next apply the boundary conditions on x = 0 surface,
where (using z = 0) ‘

E;, = gEOG—]k‘l 81119127 E, = QEOFJ_Q_]kl 51116’12” E; = :QEOTJ_G_jk2 8111922.

Clearly, with these field components tangential continuity of the total

field phasor E across z = 0 surface will be satisfied for all z if and only
if

—jk1sinfyz —jkysinf1z __ —jkosinfyz k1 cos O
e +1' e =T1€ : 1 1

which is only possible (non-trivially) if Medium 1

Medium 2



1. A “phase matching” condition? z

k1 sin 91 = ko sin 92 T® ok, k;

known as Snell’s law is satisfied, and

2. I'| and 7| satisfy
1+FJ_:7—J_. k1 cos 0,

Medium 1 Medium 2

e Tangential components of H;, H,, and H; on z = 0 plane are obtained
from

~

~ —7ky1sinfqz . ~ —7k1sin 6z . ~ — ko sin Ooz
Ei:yEoejl 17E7‘:yE0FJ_e]1 17Et:yEOTJ_6]2 2,

as

E, cos b E | cost; . . ~
o, : . e j/’{;lslnﬁlz7 2H, =

m m P

jhisintre s E,7 cos ‘926—jk2 sinflyz

2H, =

Clearly, given Snell’s law, tangential continuity of the total field phasor
H across x = 0 surface will then be satisfied for all z if and only if

cosf; cosby . cos 0

— 1 = T].
T Ui T2

Combining this with
I+ FJ_ =T,

!Note that “Snell’s law” can also be interpreted as having the components of wavevectors k; and k;
equal along the interface between media 1 and 2.



we find that

cos 6 cos 6 cos 6 cos By — ny cos b
1 P, = 2(1+FJ_> - 112772 1~ 2
m m 72 1o cos 01 + M1 cos Oy
and ) y
Cos
T.=14+1, = 2 ! .
My cos B + ny cos 5
Zﬂ
»
k, ¥
02 kQ fxin 192
—~
k1 sin 64
k1 cos 0y
Medium 1 Medium 2

e Conclusion: In TE reflection problem, the Fresnel reflection and
transmission coefficients are
_ By, mycost; — ncos by Ey 219 cos 04

[ = = and 7 = = :
+ Eyi  macosth + ncosty + E,i  mpcosf; 4 nycos by

respectively. The coefficients enable us to express the reflected and
transmitted wave phasors in terms of the incident-wave electric field
phasor at the origin (i.e., E;).



Example 1: Medium 2 is vacuum while medium 1 has p1 = p, and ¢, = 2¢,. Given

that a TE mode incident field phasor
E, _ 3)56_jk1(cos 30°z+sin 30°z) X
(3 m,

determine ET, Et, and H;.

R PR T R

Also, according to Snell’s law,

Solution: We have

k Ve
k1 sin 81 = ko sin 82 = sin QQ _ M sin 61 _ €111
ko v €242

indicating that
0y = 45°.

Now, the reflection coefficient is

V3 o 1
I = By — 72 €08 01 — 11 cos 0 — floa — %75 = \/75 _% ~ 0.268
E,i  mgcosB; +n; cos by 770@ + \%% 73 + %
The transmission coefficient is
Ey 21 cos b, 2,
TJ_:E‘: cos b & COSHZ 7 %1%1.268.
yi 12 1T 2 My + N

Consequently, the reflected and transmitted wave phasors are

- . o o3 o V
E, = ?;(5 x 0.268)6_']k1(_(30530 z+sin30°z) v

m

sinf; = v/2sin 30° =

?

N




and

— ; < /RO . o V
E, = Q(E) < 1.268)6—]192(00545 x+sin45°z) -
m
Finally,
g _ kex E;  (cos45°% + sin45°2) x (5 x 1.268)e ka(cos 45°a+sind5°2)

t koo Mo

B (2 _ g})(5 X 1.268)6—]'/{2(00545°x+sin45°z) A

B 1207y/2 m’




17 Reflection and transmission, TM mode A
y
e In TM mode reflection problem, the plane-wave field phasors incident *. ks ki
on the interface between medium 1 and 2 — x = 0 plane — are specified ko sin 6y
as B T
~ : ~ kz X I‘IZ
H, = {H,e %7 and E; = —n :
k1
where . .
N o Medium 1 Medium 2
k; = k(T cos b + Zsinby),
and
w 1 _ /M

)
(%] vV H1€1 €1

e In medium 1 we postulate a reflected plane-wave with field phasors

| i k. x H,
H, = §H,Re 7" and E, = —j—

kb
where
k, = ki(—x cosf; + Zsinby).

e In medium 2 we postulate a transmitted plane-wave with field pha-
SOTS

kt X I:It
ky

ﬁt = g)HOTe_jkt'r and Et = —1

where
ki = ko(Z cos Oy + Zsinby).

1



and

w 1
ko =—, vy = 2 = &-

) )
(%) \/ H2€2 €2

To justify our postulates and determine a set of reflection and transmis-

sion coefficients R and T' — defined in terms of magnetic field compo-
nents — we will next apply the boundary conditions on x = 0 surface,
where (using x = 0)

~

H, = @Hoe_jkl 8111912’ H, = QHoRe_jkl sin 01z H, = @)HOTe_ﬂQ 3111«92.

)

Clearly, with these field components tangential continuity of the total
field phasor H across x = 0 surface will be satisfied for all z if and only
if

e—jk‘l sin 01 2z + Re—jk‘l sinfhz _ Te—jk:g sin 09

which — given Snell’s law — is only possible (non-trivially) if Medium 1 Medium 2
1+ R=T.

Tangential components of EZ-, Er, and E; on = 0 plane are then

obtained from

H, — gH,e ™5 07 I — gH,Re F15n07  F, — jH, Te IF5nb

as

2E; = —1)1 COS 0, H e /hisintiz 2B, = 71 COS 0, H,Re /F1smbz 2B = —1)9 COS Oy H, T Ikasinbaz,

2



Clearly, given Snell’s law, tangential continuity of the total field phasor
E across x = 0 surface will be satisfied for all z if and only if

nicosb(1 — R) = nycos 0T
Combining this with

1+ R=T,
we find that i
Medium 1
nmcosti(1 — R) =mnycosbh(l1+ R) =
o Hy,  micosth —mcosth E, K.,
 H, 0 6 E,  E.
y 71 COS U1 + 72 COS U2
=T
and
L m cos 07 — 1 cos 03 N
11 cos 01 + 1 cos Oy
T — Hy _ 211 cos 04 _m %
H, mcosty +mgcosby o E;

= 7”

— E;, E,, F; refer above to the (phasor) amplitudes of the incident,
reflected, and transmitted electric field vectors at the origin, point-

ing in the reference unit vector directions along H x k indicated
by the arrows shown in magenta in the margin, while,

3

Medium 2



— I'j and 7 introduced above are known as Fresnel coefficients® for
TM polarized reflection and transmission, respectively.

e Conclusion: In TM case, the Fresnel reflection and transmission co-
efficients for plane-wave electric fields are
E,. E.  mpcosby — my cos b Ey 219 cos 04

'y = = —— = and 7 = — =
| E;. E;  nycosby + npcos by 7l E;  mycosfy +micosb’

respectively. The coefficients enable us to express the reflected and
transmitted wave phasors in terms of the incident-wave electric field
phasor at the origin (i.e., ;). Note that 1+ I'jis no longer 7!!

Note that for 8; — 0, the Snell’s law implies #; — 0 also, in which case

Ezr T2 — M Eyr
FH = = =1, =
E.  m+m Ey
and
- By 2 _ By
== 7 =2
| E;i  m+m Ey
(as one would have hoped for) since the distinction between TE and
TM cases vanishes in this limit.
Medium 1 Medium 2

!Fresnel reflection coefficients I'| and ') relate the tangential components of incident and reflected
electric field vectors in TE and TM cases, respectively, while Fresnel transmission coefficients 7, and
7 relate the amplitudes of incident and transmitted electric field vectors.

4



Example 1: Medium 2 is vacuum while medium 1 has pu; = p, and ¢ = 2¢,. A TM
mode plane-wave with an electric field amplitude of 1 V/m is incident on medium

2 with an angle of incidence of 1 = 30°. Determine the wave-field phasors E;,
E,, and E;.

Solution: The described incident wave field can be represented as

nd . N ~ o o : o V
E; = (sin 30°% — cos 30°%)e Ik (cos30%a+sin30%2)

m
H1 Ho No
e = _— = —  a d e 0-
" Vea V2 V2 TR

k €
kisinf; = kosinfy = sinfy = gin 0, = 1
ko €afl2

Also

Snell’s law gives

1
sinf; = v2sin30° = —,

3z

indicating that
0y = 45°.

The TM mode reflection coefficient is

~ 0.0718.

hi=-% 14432

Er_n200882—77100881_770% no@_l—\/g/Q
o - 1 V3
E;  nycosfy + n cosb N5 v3

The transmission coefficient is

LB pest
II_Ei 1o cOS By + 1 cos b 770\%+%§ .

Consequently, the reflected and transmitted wave phasors are

E, = —00718(Sln 30°Z + cos 3002)e_jk1(— cos 30°z+sin 30°2)

I=

m




and

E; = 1.3127(sin45°% — cos 45°2 ) k2 (cosds™rtsinds™) —
m

<

-

TE reﬂectiop:

Medium 1 Medium 2
- E,.  mycosth — i cos by
o E, ~ mycos By + mp cos by

E, 219 cos 04

\_ L= E,; - 19 cos 01 + my cos By’

N

TM reflection:

Medium 1

E,.  mocos by — nycos b

Medium 2

EZT

L

) _ L
=7

\___'"E

1o cos B + ny cos b - E.;

21 cos b4
1o oS Oy + 1y cos 01

/




Brewster’s angle:

For diamagnetic and paramagnetic materials which cover a vast amounts of
media of interest in EM and optical applications, we have pu ~ pu,. For
TE and TM reflection problems between diamagnetic and/or paramagnetic
materials it is therefore possible to take uo = pq and simplify the reflection
and transmission coefficient formulae above.

e For the case o = 1, I' ) = 0 iff ny = my, 1.e, €9 = €1, but it is possible
to have I'y = 0 with 72 # n; at a special angle 6; known as Brewster’s
angle, 0, examined in this section.

4 N/ N

TE reflection: TM reflection:
E 1o cos 81 — 1 cos B,
r ==-2= _
+ E,i  macosf) 4 m cos s Iy =-— Er _ 1208 by — 1 cos 0 — Ear
E;, mnycosby+mncosty E
S Ey 219 cos 04
1l = - 9
\_ E,i  macost + ncos by ) B, 21 cos 0y

TI=g5 =

\_ E;  mycosfy +mycosb -

e Note that in view of Snell’s law

\/ U2€2 sin 92 = v/ M1€1 sin 91

we have

. E,  nycosfy —ncosb
[

E;  mycosby+mcosl;
7



only when
. 9 H1€1 . o
1M cos By = nycosbh = 172\/1 —sin“ 6y = 772\/1 — ——sin“ 04.
H2€2
Squaring this we get
M1 2 H1€1 -
(1 —sin?6) = 25(1 — =—sin’fy) = sin’6, = e
€1 ( ) 62( [h2€2 ) 1-2+2)
For pg = pq, this yields
1
0, = sin* — =40,
1+ é

which simplifies as the Brewster’s angle

€2 _ €2
€9 + €1 €1

0, = sin

A physical insight to Brewster’s angle 6, can be gained by noting that
(as verified below)
Qp + 0y = 90°,

implying that vector —E; in medium 2 is co-aligned with wavevector
k, of the zero-amplitude reflected wave in medium 1 as shown in the
margin.

Geometry at Brewster'’s angle

A
k;
"N. k, "N
/:9’) ..'/\ \02
yL ~
0
___________ ki
E;
Medium 1 Medium 2

€1 > € <= 92>91

Geometry at Brewster'’s angle

A
z
k;
£,
‘... kr ’ 7Y
.h
~
/29 ...... - \9
D - 2
k;
E;
Medium 1 Medium 2

€1 > € = 92>91



— Now, the physical cause of the plane-wave E, is the superposi-
tion of dipole radiations of polarized molecules in medium 2 into
medium 1, behaving like a giant 3D antenna array.

— However propagation direction k, of wave E, is the dipole axis of
these molecules when ¢, = 60, in which case radiation amplitude
becomes zero because dipoles do not radiate along their axes as we
have seen earlier on (they radiate best in the broadside direction)!

Verification of 0, + 0, = 90°: For py = p1q, Snell’s law simplifies as

Ve sinby = \/e;sinby,

: €1 .
sinth = 4 [ —sin 0;.
62 Geometry at Brewster'’s angle

yielding

For 6, = 0,, we have

Zﬂ
€ € € € k,
sin 0y = —181n«9p: - 2 = S o
€9 €2\ €2+ € €9 + € ‘~.,..kr 'S
implying that /zep ~~~~~ LT \02
)
_ € €9+ €1 — € € _
sin’ @y = L _ = ! 21— 2 :1—81n29p:(30829p. k,
€2 + €1 €o 1+ €1 (3 i E I + S— e
Thus E;
sin fp = cos 6, Medium 1 Medium 2
a telltale sign that 6, and the corresponding 6, add up to 90°! (QED) €1>6 < >0

9



e Finally, there is no Brewster’s angle for TE mode reflections because
in the TE case k, is unconditionally in the broadside direction of E,
polarized dipoles (in gy direction). It is easy to see that for pus = puy,
FL:OiffEQ:ElI

Verification: According to Snell’s law

Ve sin by = /e;sin b

while
B, mcosth —micosth

') = 0

Eyi  macosf 4 my cos 0 N
only when
11 cos By = ny cos 0.

Dividing Snell’s law with this relationship we get

vV p1/€1 V fi1/ €

But this condition of 6y = 6, is only permitted by Snell’s law if 19 = ny,

tanfy = tanf#; = tanfy = tanb,.

the trivial case of no practical interest.

e Read pp 322-323 in Rao for a discussion of the applications of Brewster’s
angle.

e One simple application: reflected light from ground is typically TE
polarized (parallel to the ground) because the TM component of light

10



reflects poorly because typically ) may be close to 0. It is easy to elim-
inate TE polarized glare from the ground by using polarized eyeglasses
which only transmit the TM component of light (polarized vertically).
Note that this application also explains why the Brewster’s angle 0, is
also known as “polarizing angle”.

11



18 Reflecting plates, monopole antennas, corner

reflectors

-

TE reﬂectioq:

Medium 2

Medium 1

E,.  mycosth —mcost
E,
By _
E,i  mycosb + nycos by’

[ =
+ 1o cos 01 + 11 cos Oy

219 cos 04

T =

N

/

-

TM reﬂectjon:

Medium 2

Medium 1

E.  mocosbly —mcoshy  E.,

I'=— =
| E;, mnycosby+mncosty E

E, 219 cos 04

= E; - 1 cos By + my cos B

\_

)

e In deriving the transmission and reflection rules for TE and TM modes
summarized above we assumed lossless propagation media during the

last two lectures.

e The equations can be easily modified as described next if either medium

1



1 or medium 2 or both have non-zero conductivities o1 and/or os.

In general, in the case of a non-insulating medium with a finite con-
ductivity o, we expect a conduction current J = oE, in which case the
plane-wave form of Ampere’s law can be cast as

—jk x H = oE + jweE,
) 0 | =
= jw(e+ —)E.
Jw
Since this equation differs from the non-conducting case only by having

€+ fw in place of €, propagation parameters

k=wy/pne and n= K
€

of non-conducting media are modified as

k=w ,u(e—l—,i) and 7= 'LLO,,
Jw E—I—j—w

respectively, in homogeneous conducting media. In other words a con-

ducting medium is treated as a dielectric with a permittivity € + j%

e Consider the wavenumber



in a medium with € > ¢/w. In that case — poor conductor approxi-
mation — we can approximate k as

o

b = wnfite = 52) = fuel — 52) = o - 1)

1
= wy/Jl€ —]5\/%0 =k — gk,

= Re{k} =~ wy/pue Propagation constant

with

and

1
E'= —Im{k} ~ 5 K5 Attenuation constant.
€

These terms are applicable since
S s (1 1 a1/
ejkrzejk:szej(k /{3)826 l{:se jk's

clearly signify an attenuating plane-wave field with distance s measured
in the direction of a unit vector k£ such that k introduced above relates

to k= k" — jK" as in

k = k(K — jE").
Conversely, in a medium where ¢ < 0/w — good conductor approxi-
mation — we can approximate k as

Y N =

1 —
= ﬂ]\/w,ua = (1 =g/ 7fuoc =k — j&"

3



Clearly, in this case the penetration depth ¢ (recall ECE 329 —
distance for the field to decay one e-fold) is

1 1

G

and this quantity vanishes in the limit ¢ — oo — the meaning of this is,

J

TEM waves cannot penetrate regions of perfect electrical conductors.

Example 1: Consider a plane wave of frequency f = 400 MHz propagating in a con-
ductive medium with conductivity o = 4 x 107 S/m. Given that the wave phasor
is

E(x> _ QEOG_jkx _ @Eoe_knxe_jklx.

determine E(z,t) and H(z,t) and the penetration depth (skin depth) § as well
as the propagation velocity v, = w/k’. Assume that p = 1, and € = ¢, in the
medium.

Solution: We first note that in this case

o 4 x 107 1 > 1
— = frd € = €, ~ —.
w 2w x 400 x 106 207 367 x 109

Thus

d
K = k' /7o = /7400 x 106 x 47 x 10-7 x 4 x 107 = 87 x 10 225,

m

Also,

' 97 % 400 x 106 x 47 x 107
n= |-t~ \/]—w“ - \/ XA X T XA X 450 = 27/2./45° ).
€+ jlw o 4 x 107




Therefore, we have

v
E(z,t) = §E,e 51" cos(8m x 10°% — 87 x 10%z) —
m

and

E —8mx10%x kA
o cos(8m x 10% — 87 x 10%z — 45°) —.
27v/2 m

The penetration depth is
1 1 1

5 = — = = X 10_3
K~ 8mx 10° 807 m’
clearly a small fraction of a millimeter. Finally the propagation velocity is
w 81 x 108 , M
vy —— — — ——— — .
K 8w x 104 S




Example 2: A plane TEM wave propagating in air with a phasor
B () = je /A0
is incident = 0 plane at the planar boundary of a good conductor for which
o > we. Determine the transmitted field phasor E;(z).
Solution: Formally
Et(x) _ @He—j(kzzﬁkzzd

where, according to Snell’s law,

k1
ko, = k1, = —
2 1 NG
and
oy = k%—k%zz\/ /ww—— V—jpow =k — jK"
with
=k =\/rfuo.
Thus

- (e k1
Ei(z) = grie e Ikt 72)
which is a non-uniform plane wave since E; is not a constant on planes of
1
constant phase as a consequence of e ¥ * factor.

The transmission coefficient 7, can be computed using the usual formula for 7|, but
with a complex valued cosfy obtained from sin?6y + cos?fy = 1 and Snell’s
law, kysin#y = kosinfy, used with complex ko and sinfy; — under the “good
conductor” conditions considered here, it will be the case that cosfy, ~ 1 and

2 0
7| e |20 1,

A plane wave is said
to be mnon-uniform
if the wavevector

k = (k;, ky, k2)

contains a complex
valued component so
that the field is not
constant on planes of
constant phase.



e Assume that medium 2 is a perfect electrical conductor (PEC), i.e.

)

09 — 00. In that case

N2 = f — = (0 (PEC is like a "short"), and
e+ Z
Jjw
4 N/ N
TE reflection: TM reflection:

_E,  mycost; —ncosby E,.  mpcosth —mcosty E,

+ Eyi  macosf; 4 my cos 0 ” E;  mycosty+micosth LB
;= By _ 2 cos 0 0 o Ey _ 215 cos 0, 0
\_ Ey;  macos B +nycos by J \_ = E;  nycosBy + nycos by ' -

Conclusion: all plane waves incident on a PEC boundary will reflect in
such a way that Etan at the bounding surface (this is the tangential com-
ponent of the total field summed on the dielectric side of the boundary)
is everywhere zero, whereas the accompanying Hy,, at the bounding
surface will imply a surface current J such that [Hyg,|? = |J,|%

e In “perturbation method” solutions good conductors are treated as PEC’s
to infer [Hyg,|> = |Js|? and then the power loss per unit area of the
good conductor is subsequently calculated as the Poynting flux on
the conductor side surface — works out to be 2|[Hy,,|*Re{n} with

Re{ny} =~ \/”Uﬂ referred to as surface resistance!

7



e We will next examine the consequences of this conclusion on antennas
placed near conducting planes.

Source current

Monopole above reflecting surface:

e Consider a a straight wire of a length h “end-fed” by an independent

current source I(0) = I, connected as shown in the margin between the

wire and an infinite ground plane. For h < A = 2% we may assume a / tnage current

current distribution

1(2) = LA )u(?)
that drops linearly from I, to 0 across the length of the wire.

We next construct the radiation field of this so-called vertical
monopole antenna by postulating that the monopole will ra-
diate, into the half-space z > 0, like a short-dipole of a length
L = 2h having a triangular current distribution

2z

id<Z) = IOA(Qh)

that matches (z) for z > 0 and is considered to be a “image”
current of /(z) for z < 0.

We justify the postulate by observing that:

1. the field generated by I,(z) is in § = —2 direction on z = 0 surface,
and therefore it satisfies the boundary condition of having zero
tangential E on the perfectly conducting surface,

8



2. the field generated by I,(z) also satisfies the boundary condition
of having zero tangential E on the perfectly conducting surface
of the h-long monopole wire, since the wire is just the upper half
of a two-wire dipole of length L = 2h (on which the condition is
satisfied ipso facto),

3. Maxwell’s equations (ME) necessarily have a unique solution for
each possible configuration of boundary conditions (BC) — a so-
lution of ME’s matching the given BC is the solution!

In view of above, the radiation field of the monopole is

- jnolok% sin (96;?@ for z > 0
0 for z < 0,

where % should be replaced by h. As this result indicates, a monopole
radiates its entire power to one hemisphere as opposed to a dipole in
free space radiating equally into two hemispheres.

In the above description of the radiation of the monopole, the bottom
half of the current distribution I(z) is said to be the “image” of the
source current I(z) on the monopole. The image is really “imaginary”
in the sense that the “real”, actual, sources of the radiated field E in
the upper hemisphere are

1. I(z) on the monopole, and

I

Source current

/ Image current



2. a surface current Jy(z,y) induced on z = 0 surface in order to
satisfy the BC 2 x H(x,y,0) = Js(z,y).

e A short monopole of length A < A radiates half as much power as
a short-dipole of length L = 2h having an equal input current I,.
Therefore R,,; for monopole is half of

Rygq = 207 2(%)2 = 2072(%)2 " Sour~ce current
of the dipole, i.e., — I ) x
Ryaq = 1072(%)2 = 40772&)2 %
ad,mono )\ h

/ Image current

in ohms.

e Directivity of monopole is twice the directivity of short-dipole, i.e.,
D = 3, since the beam solid angle €2, of the monopole is half the solid
angle of the dipole (why?).

e Finally, a monopole of length h = % is called a quarter-wave monopole.

— In analogy with a half-wave dipole, the quarter-wave monopole
has a radiation resistance of about 36 ohms and a directivity of
3.28.

10



Corner reflector antenna

e The following diagram depicts a “corner reflector” antenna on the left,
and its image based model as a 4-element array:.

<
Image
*, @
Image .. o Dipole
@ ~:)::' @
}' @
Image .
A
(a) Corner reflector (b) Image based model

— Note that the image elements in the model have been so selected
that the 4-element array has tangential electric field nulls along
the conducting walls of the corner reflector placed next to the
z-polarized dipole antenna (seen from the top) shown on the left.

— The field of the corner reflector antenna matches the field of the
4-element array in the rightmost quadrant in the diagram bounded
by the diagonal lines. The field can be calculated easily by using
an array factor that depends on the distance of the dipole from
the reflecting corner (see HW).

11



19 Total internal reflection (TIR) and evanes-

cent waves
TE reflection:

z
e Consider a TE- or TM-polarized wave (or a superposition) incident on v,
. . . . . . W k, k; v
an interface at x = 0 surface as depicted in the margin at an incidence *» /, t\ i g
0. .. A 2 2
angle 6. R
H, ) .
[ k. k1 sin 64
e Independent of the polarization of the incident wave, the angle of trans- ™ iicosg,
mitted wave 6y can be found using Snell’s law Mediun 1 vediun 2
_ . . . Lyr __ mpcosth—n costy
ki1sin@; = kosinfy = /p1,€1, 810601 = /li9,€o, 85I 6 Eyi — m2cos b+ cos

Ey 219 cos 01
Ey; — mgcosfi+ny cos by

assuming lossless media on either side of the interface, where
TM reflection:

_ M _ € :
= — and €, = — o
o € ‘. k, k, v,
. . . . . . S YO ‘
are the relative permeability and permittivity, respectively, of the prop- f 0, " .. e;\ ki sin 0
agation media. Moreover, P
kl' 1S1n Uy
/_,LLE c EklcO%Ql """"
\% ’LLTET T —=1n Mecliﬁm 1 Medium 2

/o€o B Uy

above can be referred to as the refractive index of the propagation

_E. _ mocosta—ny costh
E; ~ mycosfy+n; cosby

Er _ 219 cos 01

medium. E; M2 cos Oa+n1 cos 1

e Snell’s law, expressed in terms of refractive index, Refractive index:
nisinf; = ngsinfy = sinfy = —sin b, v VHEr

no



shows that for a given #;, the corresponding sin#, can be in excess of
1 when n; > no, that is, for propagation from a high refractive index
(optically thick) material such as glass into a lower refractive index
(optically thin) material such as air.

— For example: if Z—; = 1.5 and #; = 45°, then

15 15
sinfy = Lgin gy = 1.58in45° = —= ~ 1.

~ >
n V2 141

But, sinfy in excess of 1 cannot be solved for 6, as if it were
a “regular” angle' describing the elevation of vector k; above

the r-axis.
e In general when ny > ny and the incidence angle Critical angle:
n € .
6, > sin~! 2 _§in ™! H2© 0. 6, =sin~! %
Ny [L1€1 !
we will have sinfy in excess of 1 and cosfy = \/ 1 —sin? 6y purely
lmaginary.

— 1n such situations use sinf, and cosfy = \/ 1 — sin® 6, directly in
the expressions for k;, I', and 7 as illustrated below.

Nor if sin 65 is complex valued because medium 2 is lossy and we need to use €, = Z—i + ]Z—io in Snell’s
law (as we already did in Lecture 18).



— as we will see the situation corresponds to having a total internal
reflection (TIR) in medium 1 and establishing an evanescent
wave (a special form of non-uniform plane wave with an imaginary

valued ko) in medium 2. Total internal reflec-
— For example: for Z—; = 1.5 we have tion (TIR)
1
B, = sin~! 2 — gin! — ~ 41.81°, and
i 1.5

which is less than #; = 45° which is why we find sinf, > 1 in the evanescent wave
above example (see margin for an example plot of this configura-
tion in the context of a glass prism with n = 1.5).

e To understand the field topologies for 8; > 6, = sin™! ”2 let us examine
the reflected and transmitted field phasors for, say, the TE polarization,
as 0 approaches and then exceeds 6,.. We will simplify this exercise by TE reflection:

taking u; = puo = p, so that the refractive index .,
;‘u"kr k;
n1,2 = ,/67*172 /).9.1 ....... 0\ ko sin 0y
: . .. . _ 0,
in Snell’s law, and so that the reflection and transmission coefficients - Joy sin 6,
for the TE-mode shown in the margin can be expressed as  kicosf
Ey mycosf; — n cos by ny cos 7 — nycos by pedtom 1 tedtum 2
['| = — Eyr __ 1pcosfy—n cos by
Eyi  macosth +mcosty N1 cos 01 + ng cos By E,i — 1080yt cos s
Eyy _ 219 cos 01
and e o8 f Ey; 12 cos 01+n1 cos b
1 1
T.=141 =

Ny cos 01 + nycos Oy

3



We have, using Snell’s law

: : : ny .
nisinf; = ngsinfy = sinfyh = —sin by,
n2
and, therefore,
n2
cosfy = \/1 —sin?0, = /1 — —%Sin291

n

2

in the coefficients above.

e For )
5, . n
6, >0.=sin ' = & sm2912—§,
we have a purely imaginary
2 2
costy =4 /1 — —%st 01 = tja, with a = —;Sm2 0, — 1,
n n
2 2
in which case?
nicosfh —ngcosy  nqjcosbt F jnoa 4, Noa
[ = = , = 1/F2tan” ( .
nicosbh +ngcosty  nqcosby £ jnsa nq cos 61
2Also, for TM reflections,
ng cosfy —nycosby  nycosb Fjnja i, M
I ngcosfy +nqycosfy  ngcosth + jnja +otan <n2 cosfy’’

with the same magnitude as I"; but a different angle values (Goos-Hénchen shifts) varying from 0 to 180°
as fyvaries from 6, to 90°.



and -
Ti=140 =14+1/F2tan" (——).
nq cos 01

Note that

1. [I'y| = |E,/E,;l =1 at all §; > 6., a condition known as total

internal reflection (TIR).

2. 7, = E,/E, # 0 in general and therefore a non-zero trans-
mitted field exists in medium 2 despite TIR — this field in

medium 2 has evanescent wave character described below.

e We can express the transmitted TE-mode field phasor for 8; > 6.

as B =g E, eIk — E, o~ k2(cos Bpatsin 62)
where ooty = i
E,=FE,l+ T ——
kosin @y = kysinfy (Snell’s law),
and

ko cos Oy = ko(tja) = +jkocy, where o = \/—2 sin? 6, — 1.

TE reflection:

»
»5‘...~.kr kt y
.... kg sin 92
/)(91 Seel 9;\
H, 0y d
[} k‘l sin 91
,,,,,,,,,,,, Ki oo
k1 cos 0,
Medium 1 Medium 2

Eyr  n9cosf—nj cos By
Eyi — mgcos i+ cos by
Ey 219 cos 01

Ey; ~ ngcosfi+ny cos bty




Thus,

- ny cos 01 F jnsa

Et _ yAEyz(1+ e—jklsinﬁlz e—j(:l:jkgoz)x

ny cos b1 £ jnsa

ny cos by F jnoa —ik1sin0iz Ehyoz

= yE,(1+ ,
gEy( ny cos b + jnsa

e Depending on which root we select — 4 or — — we have two candidate
solutions for medium 2 satisfying the plane-wave form of Maxwell’s
equations.

— In geneal E; should be a weighted superposition of these two so-
lutions with weights determined by boundary conditions. In par-
ticular the solution that blows up as * — oo can be assigned zero
weight in problems where the z-extent of the propagating region
is unbounded, leaving us with an evanescent wave

Et — gEyz(l + Fj_)e_jkl Sin@lze—]@o@

in the region x > 0, with

ny cos B + jnoc n?
' = ! AL and a:\/—lsm291—1,

ny cos 0 — jnoc n3

when the total internal reflection condition
1 %
ni

691 Z 90 = sin

holds.



— This solution should fit (as we are about to see) the plane-wave
form of Maxwell’s equations with

k = k; = k(T cosby + Zsinby) = —jkoat + kysin 6 2

which

1. is perpendicular to E; « ¢ as required — ie., k- E, = 0
(Gauss’s law),

2. implies a complex valued unit vector

k; kq

k=—=_jai+ 2sinb 2
hy | O T
which satisfies
A A k2 n? n?
k k:—a2+—;sm2«91 —(—%Slﬂ2¢91—1>—|——581n2¢91:
ks ny 1y

as required, and

3. implies a transmitted magnetic field intensity phasor

~  kxE, Ey o s ke
H,; = L= 2V (4D e dhsintizg—haar (s 5 Zlin 6, )
p iy ko

which is of course transverse to k ipso facto.

— It remains to show that
Z - <Et X Ht> =0
7



so that

— demanded by TIR — is satisfied.

Verification:

<Et X Ht> = —Re{Et X H }
k

Fy; P o
— ‘ y2| 7" e 220 Rl X (jak — k—lsmﬁlx)}
2 2
2 |2
_ ‘E?ﬂ’ ’TJ-‘ e—2k:2ax@ sin 6, .
212 ko

Evidently, timed averaged power flux is directed along the interface
and has no component along £ normal to the reflecting interface.

Example 1: Consider a uniform plane wave propagating in quartz with ¢, = 2.25 and
n = /€ = 1.5 incident on a quartz/air interface at an incidence angle of 45°.

Determine the evanescent field phasor E; established in air outside the quartz
slab. Assume that the incident wave is TE polarized and the wavelength is 1 mm
within the quartz.

Solution: With #; = 45° and n; = 1.5, np = 1, we have cosfy, = —ja with

2 2.25 [2.25 /9
a:\/n—gsin2011_\/—sin45o1: L l=y 1= —
ns 2 8




Hence,

. :n100891+jn204:%_2+ﬂﬁ S+l 80 ey ing
=7 nicosfy — jnga %%—k 1\f 33—l 10 s

and

Also, since Ay = 1 mm, it follows that

2 d k 4 d
Fi= = o = keyny = kLB, ky = ok = —
A1 mm 1.5 3 mm
where k, = w/c is the free space wavenumber also applicable in air (i.e., ks).

Therefore, we have

Et — ?)Eyi(l—f—FJ_)e_jleinelze_k?ax

2, _2m .V
1E,i(1.8 + j0.6)e Ve e et —
m

where x and z are used in mm units. This is an example of an evanescent field

that “hugs” the the quartz/air interface on the air side.

e To summarize: TIR that occurs when 6; > 6. is accompanied by an
evanescent transmitted wave.

e The evanescent wave: An evanescent wave is a non-
uniform TEM wave since the

1. has a decaying amplitude with distance away from the reflecting geld vector in non-uniform

on surfaces of constant phase.
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interface (that is along x) and carries no average power away from
the interface,

. it exhibits a phase variation along the interface (that is along z)
that matches the phase variations of the incident and reflected
waves in medium 1,

. it carries average power only along the interface and only close to
the interface because of the e=2#2%% factor — thus it is also known
as a surface wave,

. it can be perturbed by introducing some new materials into region
2 to start drawing energy towards medium 2 — this is the topic
of frustrated TIR to be examined next.

10



Frustrated TIR and tunneling;:

e Suppose a silicon atom is brought to a location right next the prism as
shown in the margin where an evanescent wave is present.

— What happens then to the evanescent and total internal reflected
waves to either sides of the diagonal face of the prism?

— What happens when the atom is replaced by another prism placed,
as shown in the second diagram in the margin, at a distance d away
from the diagonal face?

e In the first instance, the silicon atom will be stretched into a polarized
dipole by the action of the time-varying evanescent electric field outside
the prism and therefore it will radiate like an oscillating Hertzian dipole
antenna at the frequency of the evanescent wave.

e The radiation field of the atomic dipole will then superpose on the
evanescent and internally reflected fields, modifying them both, and
enabling the extraction of power from the incident wave to be trans-
ported away from the TIR interface.

— This is an elementary example of what is known as energy “tun-
neling”.

e The tunneling phenomenon becomes more pronounced when the atom
is replaced with a second prism (a whole array of silicon atoms mixed

11

Incident

Incident

Reflected

Reflected




with oxygen atoms) as illustrated in the margin.

— The described phenomenon is known as “frustrated” TIR, because
the presence of the second prism will perturb the reflected wave
substantially when the gap width d between the prisms is a small
fraction of a wavelength .

— The double prism arrangement shown in the margin can be used
as a ‘practical” beam splitter at optical frequencies by adjusting

d/\.

— A quantitative treatment of the tunneling problem will be pre-
sented in Lecture 24 in a multiple slab geometry involving evanes-
cent regions.

12



20 Reciprocity and receiving antennas

e Antennas exhibit a reciprocal behavior in their properties pertinent to
the “transmission” and “reception” of electromagnetic waves.

e In the diagram in the margin Antenna 1 on the top left, with an input
current phasor Iy (applied between its terminals indicated by a and b)
and response voltage Vi = Z,1; is “transmitting” — that is, it produces
a radiated field indicated as El X fl, which 1s shown to be incident
on Antenna 2 to induce an open circuit voltage ‘72 = Zgljl between
terminals ¢ and d of Antenna 2.

— Input voltage V; of Antenna 1 and output voltage Vi of Antenna 2
are obtained from the input current I; by using the transmission
impedance Z1 = R1+7X; of Antenna 1 and the coupling impedance
Zo of Antenna 2 to Antenna 1, respectively.

— As an example, for a half-wave dipole used as Antenna 1 we would
have Z1 = 73 4 j0(2, and Zy; would depend on the type, orienta-
tion, and the distance of Antenna 2 coupling to the transmitting
half-wave dipole considered in this example.

e The open circuit voltage Vo = Zoyl; of Antenna 2 can be used to
construct the Thevevin equivalent circuit of the coupled antenna system
shown in the second row in the margin where

— the Thevenin voltage Vi = Zglil,

1

[W (}/2 = ZoI)
Bl
Antenna 2
Ir=12
Vr = Zo11y Vo = Zon 1y

]
;

Thevenin Eqv with Load



— the Thevenin impedance Zp equals the transmaission impedance Zs
of Antenna 2 to produce a response voltage Z 15 between terminals

\

c and d when Antenna 2 is used for transmission purposes — this

= Znlh
can be confirmed by using the test current method! from ECE g% _jd‘
210 to determine Zp with Lies = Is. Voo prtenne 2
I 1= hy+ 74X
e The Thevenin equivalent ckt of the receiving antenna is useful to cal- =2
culate the power that can be delivered by the receiving antenna to a ZM(E = Znl,
load Zj connected across its terminals ¢ and d, as shown in the bottom vt 2oe oot
row in the margin. Note, in particular, that if Z; = ZJ, the average 2o — 7
power transferred to Zj can be calculated as the available power i H
b Vil ZuhP | ZaPILf
YT 8Re{Zr}  8Re{Z:} S8R,
using the mazimum power transfer theorem from ECE 210. “T — ZQEZZI $
e The Thevenin equivalent as well as the current-voltage relations dis- ?%Zlh [ ]z Ve = Zuh
cussed above imply a two-port circuit model shown in the margin in b >
the top row including the input source current I; of Antenna 1:
Zy — Zia Zoy — Zi1a
— You should examine this T-network topology to confirm all the o—{ | L] +CT
current-voltage relations from above. Viezon 2z | vi-zn()
— Notice that P, = {Re{Vi[{} = %|]1\2R1 represents the transmitted & -
b d
power of Antenna 1, while P, = % is the time-average power

B 1Supprqss all the independent sources in the circuit and apply L5 at its terminals to measure a
Viest = Z7l105t Tesponse in order to determine Zrp.



delivered by Antenna 2 to its conjugate matched load Z; = Z5 =
Ry — 5 X5, leading to the received-to-transmitted power ratio

P |Zaf
P, 4RiRy

e Reversing the transmission and receptions roles of Antennas 1 and 2 we
next obtain another two-port model shown in the margin in the second
TOW.

— In this case we have

P |Znf
P, 4R R

which would be identical with our earlier result if it were the case
that Zlg = Zgl.

— Certainly Z19 = Zo1 if/when Antennas 1 and 2 are identical, e.g.,
a pair of half-wavelength dipoles.

— It turns out that Z;» = Z5; is true even when the anten-
nas are of different types so long as they are embedded in an
isotropic propagation medium — this can be demonstrated by ac-
tually computing separately and comparing Z19 and Zs; in specific
cases of interest, as we will be doing later in this section. A more
general proof can also be furnished as detailed in Lecture 21.

o With 715 = Zy; = Z. we finally obtain our reciprocal two-port model
for the coupling of arbitrary antennas as shown in the margin, with the

3
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implication that

B _ 1z

P, ARRy
independent of which antenna is used to transmit and which one to
deliver maximum available power to a conjugate matched load. This
“power reciprocity” property of antennas will be next used to learn
how to determine the open circuit voltages and maximum powers of

recelving antennas.

e Consider a pair of arbitrary but co-polarized? antennas separated over
some distance r as depicted in the margin.

— Let’s first assume® that I, = 0 so that Antenna 2 can act as a
receiving antenna with some Thevenin voltage Vpr = V5 o I3, the
input current of Antenna 1 in a transmission role.

— Antenna 1 transmits an average power of P, = $Ry|[1|* and pro-
duces a Poynting flux of

B
42

incident on antenna 2 where (G; denotes the transmission gain of

Smc Gl

Antenna 1 in the direction of Antenna 2. We know about antenna

2Co-polarized means that the antennas produce identically polarized radiation fields propagating to-
wards one another — e.g., identically weighted mixes of TE and TM polarizations (wrt to any plane
containing vector r separating the antennas) as well as RC or LC polarized radiation fields.

3From here on we will drop “tildes” used in our notation to indicate current and voltage phasors to
simplify notation.



gain functions G from our study of transmission antennas.

o For instance G = %Sin29 for a z-polarized short dipole an-

tenna.

— Now let P, denote the average power delivered by Antenna 2 to
its impedance matched load Z; = Z5 and define the ratio

P,
Sinc
as the effective area of Antenna 2 for reception so that we can
write Pr = SmCAQ.

o By combining the expressions for P, and S;,. we notice that

EAQ

P, G4

P 42
and likewise we can obtain

P G4y

P 4

for Antenna 2 transmitting towards Antenna 1 with a gain
of Gy and Antenna 1 extracting power P, from S;,. with an
effective area of Aj.

o Since %’ should be identical between Antennas 1 and 2 inde- _
pendent of which one is used for transmission and which one - ﬁC RS T
for reception, as we learned above, it follows that Yij

Ay A

Ay = GHA — = —
G1 A G21:>G2 G
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o Since we reached the above conclusion with no restrictions on
the types of antennas considered in our discussion, it follows
that all antennas, independent of their design details, will
have to have identical effective area to transmission gain ratios
A/G. If we can compute A/G of any single antenna by
any means that result will be valid and usable for all
types of antennas.

> We will shortly show that
A A2

G 4r
for a short dipole antenna and then use this for any
type of antenna to relate its effective area A to its

transmission gain G.

Example 1: Recall that the gain of a z-polarized short dipole antenna is

3
G = = sin?é.
5 Sin
Therefore corresponding the effective area must be
A2 32
A="-G="—sin*0
A7 gr o

maximizing at a value of A, = %TQ for a zenith angle of 6 = 90°.




Consequently, a short dipole antenna exposed to a plane wave with wavelength A = 1
m and Poynting Flux of Sj,. = 87 W/m? arriving from § = 90° direction (from
the broadside direction of the dipole) will deliver an average power of

3\2
P.=S;,.A=8tx"—sin?0 =3W
T

to a matched load connected across its terminals.

e To show that A/G = X\?/4x for a short dipole antenna, consider the
response of a short dipole to an incident and co-polarized wave field
arriving from, say, a loop antenna, as shown in the diagram below:

Antenna 1 Antenna 2

— The loop antenna launches the co-polarized wave field OF,.c ik
incident on the z-polarized dipole on the right. The length L of
the short-dipole is much shorter than the wavelength A so that over
a region of size L surrounding the dipole located at x = x9 > L
the field phasor amplitude E.e~/**2 can be regarded spatially non-
varying and represented in terms of a quasi-static electric potential
V(2) linear in z with a slope % = E.e 7k

7



o The equipotentials representing this linear V' (z) in the absence
of the dipole are shown by dashed lines in the figure, whereas
distorted equipotentials caused by the presence of the dipole
are sketched by solid red curves. The distortions are such as
to render the two wires of the dipole equipotentials sitting at
distinct potentials V. = V(L/4) and V; = V(—L/4), respec- *

tively, as shown in the diagram, so that
L :
Vo= Vo= Va= S B

— This particular derivation of the antenna open circuit voltage in
terms of incident co-polarized field E.e™/%*2 at the antenna lo-
cation and the antenna length L is only valid for L < A, i.e.,
for short dipole antennas, and would not be applicable for, say,
half-wave dipole for which L = %

o Still the result allows a quick derivation of Ay/Gy = A?/4dx

for a short dipole in free space — which is all we need to
use P, = 5;,.A with all antennas everywhere. Here is the
derivation:
Ay
: ———
p VP BEep BN
T - I . a8
8R2 Q % 207_(_2(X>2 2407 47'(" 2
——
Ry Sine G



o Since Vo = Zy1l1 = LE e /%72 and the radiation field of a small loop

with area AzAz is E.e /%2 = n k?AxAzI, v B
follows that

at a distance xo, it

Vs LECe_j’““2 L e=dkr2 -
lyg=—=——"""—=— /{:QAxAz . 1
21 Il 2 ]]_ /r}O 47T$2 bz; 1 h iEB.e
the coupling impedance from the loop to the dipole.

e Let’s next calculate Z15 = Vi /I, by having the short dipole radiate
towards the loop antenna centered at the origin — see the margin. The
incident field on the receiving loop is once again —2FE.e7*2 which is
accompanied by an incident H = —Q%e‘jkx? to produce a magnetic
flux of & = ,uo%e_jk“AxAz linking the loop and a counterclockwise
emf of £ = gﬁc E-dl = —jwd so that an ideal voltmeter connected from
a to b would measure (see Example 6 in Lecture 14 of ECE 329 notes) 1
an open circuit voltage* drop Vi = & = —jwp, %e_jkWAxAz = Vp; "o, ITCJ

jkxo
since E.e /%2 = j], nokLe it turns out that

e jka

Zig = — = —jwlp———AxA\z = §nok2AxAz

= Zo = an
I Mol 4y =

showing that the coupling between the loop and the dipole is recipro-
cal as claimed. A general and rigorous proof of the reciprocity of the
coupling impedances of arbitrary antennas is provided in Lecture 21.

4Calculating the short circuit current I of the loop antenna would require the inclusion of a back-emf
—jwlqIy in addition to the coupled emf Vi = —jw® o I, to express the total emf RyIy of the loop to
yield Iy = Vr/Zy, Z1 = Ry + jwLy, where for a lossless loop R; stands for its radiation resistance.

9



Example 2: Consider a z-polarized half-wave dipole antenna with an input impedance
of Zo = 73} located at the origin in free space. Determine the time-average
power received by the antenna if it has a matched termination and the incident
field has an electric field phasor

E. = 120m2¢/™ V /m.

Solution: The incident field has a wave vector
k = —27Zrad/m,

indicating the antenna sees the incident wave coming from direction ¢ = 90° with
a polarization direction 6. Since

2 2 2m

A - —-— """ — = — = 1
Kk 2n
and
A2 1 1.64
= — © = — . 4 —_ 2

half-wave-dipole gain at 90°
and, furthermore,

o E.>  (1207)2
M 9p, 2% 120w

— 607 W/m”,

it follows that | 64
P, = SincA(0, ¢) = 60 X 4— =246 W
T

is the time-averaged power received by the antenna with the matched termination.
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® Suppose Antenna 2 has been terminated by some Z; # Z5. In that case power
delivered to Z; will be less than P. = 5;,.A> and can be computed using the
Thevenin ckt as follows:

Vr VrZy,
= = V=172 =
o+ 4, L Lok Zo+ 2,

Iy,

and

|VT|2RG{ZL} _ ‘VTP 4RG{ZQ}RG{ZL}

2|7y + Zp|? 8Re{Zs} | Zy+ Zp|?
——

P, with matched load

1
PL = §R6{VL]}5}:

4RG{ZQ}RG{ZL}

r < PT.
‘ZQ + ZL‘2

Example 3: Repeat Example 2 if the antenna is terminated by Z; = 36.5€) by first
determining the antenna open circuit voltage magnitude |Vp|.

Solution: In this case power received will be less than the available power

1.64
P = SineA(0, ) = 60 x —46 46w
s

of the antenna obtained in Example 2. Substituting for P,,Z5, and Zj, we find

4Re{ Z Z 4 : 4x2
P —p Re{Z3}Re{ L}—246 X73X365=24.6 X

=24 = 21.87W.
| Zy + Z1)? 73 + 36.5]2

[V |?

Alternatively, we obtain, using P, = 24.6 W, Zy, = 732, and P, = sRe{Z,}’

V| = v/8Re{Z,} P, = 119.86 V.

11




Hence

L

73+ 36.5

119.86¢7%

= V=17, =36.5

119.86¢7%

73+ 36.5°

where ¢ = ZVp (it’s value is not needed to calculate Pp), and

1
PL = §R6{VLIE} =

1 119.86¢7? 119.86¢ /¢
Los s 9.86e 9.86e

2 734 36.5 734 36.5

1

530-

36.5(

119.86

73+ 36.5

)2 =21.87TW.

e We have learned how to calculate the power delivered by an antenna
to its terminating load, whether matched or not. We have not however
outlined how to calculate the open circuit voltage of an arbitrary shaped
antenna (except for its magnitude — see Example 3) — we want to
address this next:

— Notice that V, = %Ec denoting the open circuit voltage of any
short dipole antenna of length L exposed to a co-polarized inci-
dent field E. arriving from the broadside direction, is a particular
realization of

% = geff(ea gb) sin ‘9E07

the product of the foreshortened antenna effective length and co-
polarized field amplitude incident from a direction #. The proof
that this is in fact the proper generalization of V, = %EC for arbi-

12



trary dipole antennas follows from

Aeff(0,¢)
PT:!VOP |Eclepp(0,0)sin6* B> N dx|lep(6, ¢)sin 6
SR~ 83 [ d|t.s;(0,6)sin6F ~ 2, dx [ dOIC.;;(6.)sin6]

Sinc G(97¢)

where we used the already known expressions (from earlier lec-
tures) for the radiation resistance R and gain G of arbitrary z-
polarized dipole antennas with known effective length functions

g€ff<‘97 Qb)

e The formula
Emc <9E + ¢EL>

VO = feff((g, ¢> sin QEC .....

U NN
......
U NN

represents the open circuit voltage response of a receiving z-polarized
dipole to a plane wave with co-pol amplitude E, arriving from 6 direc-

tion. A further generalization of this formula for an arbitrary shaped
and polarized antenna responding to an arbitrary incident wave field
(planar, spherical, evanescent, etc.) is given by a path integral formula

e [
V, = /Ldl E()]O

describes the current distribution of the antenna along the

I(r)
Io

path L it occupies. This result, representing a weighted sum of the

where

13



projections of the field E(r) along the antenna body, is derived and
further discussed in Lecture 21.

— Using this more general formula for the open circuit voltage V,
together with with an incident plane wave field

E(r) = (AE. + ¢E,)e**

and a z-polarized dipole geometry, such that dl = ZzZdz in the
integral formula between z = —L/2 and z = L/2, we recover, as
expected,

s
Nt
i
Vi,
s
N

7 L/2 I N N .
V, = —/ (r) dl-E(r) = —/ ) dz % - (0E. + oE, )e’*>*
L Lo —r2 Lo )

NEANERN
~~~~~~~~

L/2 I ‘
= Ec sin 6 / dzﬁejkcosez — Ec sin@feff(ﬁ, Qb)
—L/2 IO

since 2 - & = 0and 2-60 = —sinf and we also recognize the
weighted line integral of the antenna current distribution as the

antenna effective length Lerr(6, ¢) from our earlier lectures.
A z-pol dipole responding to an
e The results obtained in this lecture will be sufficient to solve the antenna Poming plane wave By, with an
open circuit voltage V, o< FE..
reception problems assigned in the homework. More general /rigorous/formal
derivations of the same results furnished in Lecture 21 will not be

needed in the homework ...
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21 Antenna reception — formal framework

e Interactions between pairs of antennas 1 and 2 separated by some dis-
tance r across an arbitrary but isotropic propagation medium obey a
reciprocity relation

Vil = Vbl

indicated in the margin — this relation, which holds when the two
antennas are excited by input currents Iy and I, one at a time, will be
derived starting with Maxwell’s equation later in this lecture?.

— Let’s take ViI; = V4ly for now as an experimental finding and
notice that it implies

i W
_:_Ean
I, I

where Z,. stands for the coupling impedance of the two interacting
antennas.

— Given Z., an equivalent circuit model of the interactions of the
antennas can be expressed as shown in the margin using the two-
port voltage current relations

Vi = Z11 + Z.1,
Vo = Z.1 + Zo1s

!This is a dense lecture providing rigorous justifications of the results obtained in Lecture 20 — should
be left as optional reading for interested students.

Antenna 1 with input current I; causes
an open circuit voltage response V5 at
antenna 2 terminals across some dis-
tance r (due to field Ey).

)

Antenna 2 with input current I> causes
an open circuit voltage response V; at
antenna 1 terminals across some dis-
tance r (due to field Ep).

W3 represents passive reflectors that
may exist in the vicinity of the anten-
nas causing some “scattered” fields. An-
tenna response voltages V; » and input
currents Iy o satisfy a reciprocity rela-
tion

Vil = Vals
Zl - Z( ZQ - Z(
L | L |
+ +
v al Vv

Reciprocal circuit model for
antenna coupling



o Here V; is the terminal voltage of antenna 1, equal to Z.Iy
coupled from antenna 2 if /when antenna 1 terminals are open
and hence 11 = 0.

o Likewise V5 is the terminal voltage of antenna 2, equal to Z.I;
coupled from antenna 1 if/when antenna 2 terminals are open
and hence [, = 0.
Zp = 7y

o /1 and Zj represent the self-impedances of the two antennas i
L1

used to express the antenna input voltages Z11; and Zs1, when
the antennas are used in transmission mode. We can call Z; Vr="1Z ®

and Z, as transmission impedances.
Thevenin equivalent circuit

e The open circuit voltage Z.I; of antenna 2 can be regarded as the ©f antenna 2 in reception

Thevenin voltage Vi of a Thevenin equivalent circuit of antenna 2
in reception as shown in the margin, where Thevenin impedance Zp =
Z is obtained from the coupling network using source the suppression
method (deactivating the source I; by replacing it with an open).

e From the Thevenin equivalent we identify the average power transferred
by I; to a possible matched termination of antenna 2 as the power
received

o Vil 5Pz
" 8Re{Zr} 8Re{Z,}

e To calculate the transmitted power F; of antenna 1 when antenna 2 is
terminated by matched Z; = Z; (see margin), we first note that

‘/1 ~ 1121
2



if |Z.| < |Z1 2|, in which case antenna 1 has a power input
1 1
P = §Re{vlfl} ~ §|11|2Re{21}.

The above expressions can be combined as

P Z,|2
P, 4Re{Z}Re{Z,}

which is a reciprocal relation symmetric in Z; and Zs, indicating that
received to transmitted ratio between the two antennas would be inde-
pendent of the transmission and reception roles assigned to the anten-
nas. The same conclusion also holds if the ratio is calculated exactly,
without making use of |Z,| < |Z12| approximation, yielding (to be
shown in HW)

P |Z|’
P, 4Re{Z;}Re{Z,} — 2Re{Z2}’

The results presented so far regarding antenna reception has focused on
the reciprocity between transmission and reception roles of antennas,
following from Vi1, = Vols.

— At this stage we would like to derive this key equality from Maxwell’s

equations and also find out how the open circuit antenna Voltages
Via = Z.I; can be computed explicitly.

— Consider the situations (a) and (b) depicted in the margin:
3

Zl_Zc ZZ_ZC ]2
[ [
L1 L1

n® zl | ]

Eqv. ckt. showing antenna 1
in transmission and antenna
2 in reception terminated by
a matched load

A { s
243@@g v
() “ate SN\
Q)i V= )
‘L { s

77 Hp é V?




o In situation (a) currents J4 confined to some volume V' surrounded by a
surface S generate the fields E4 and H,4 propagating within and outside

the volume V' as governed by Maxwell’s equations shown within the box. ) ( g
o Situation (b) depicts the very same volume of space but with a different ‘%E H, C V
set of currents J g and fields Ep and Hp also obeying Maxwell’s equations V= Ty o \\\\\\\\\
shown in the second box. (au)é Vo
— Observe that with the set of equations shown in the boxes 2 K S,
% Ep Hpg CY Vi
HB'VXEA—HA'VXEB :0 Vx Bp=juplly |

Ep-VxHy—-Ey VxHp = Ji-Ep—Jp-E4. \\\\\\\\V”glfm”‘é

O Subtracting the first equation from the second one, and using the identity H-VxE—-E-V x H =
V - (E x H) used in the derivation of Poynting Theorem we get

V'[EAXHB—EBXHA]ZJA-EB—JB-EA.

O Integrating both sides over an arbitrarily big spherical volume V' centered about surface S and
volume V and using the divergence theorem (on the left hand side) we obtain

7{ dS-[Es x Hy — Ep x H4] :f AV (I -Ep—Jp B, j{ dV J4-Ep = % dV Jp-E4
Y 1% 1%
where S’ is the surface of the larger volume V', with dS = dS7 on S’, where 7 is the outward unit

vector on surface S’.

— It turns out both sides of this equality are zero and it is easier to see how
left hand side vanishes: on S, sufficiently far away from the radiation sources
within S, the outward propagating waves appear locally planar with Hy p =
nx Ey4 p/n, implying that Ex4 x Hp = Ep x H4 (to be shown in HW) leading
to the conclusion

%dVJA-EB :j{dVJB-EA
v v
known as the reciprocity theorem — the left side volume integral is said
to be the reaction? of source J A to source Jp producing Ep, equal to the

’see Rumsey, 1954, https://doi.org/10.1103 /PhysRev.94.1483.
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reaction of source Jp to source J 4 represented by the right side integral over
the same volume.

e We next use the reciprocity theorem just derived to obtain ViI; = Vol
pertinent to a pair of interacting antennas shown in the situations (a)

and (b) depicted in the margin. BN
— Current densities J 4 and Jp have been constrained to flow on surfaces of per- G- V2
fectly conducting and infinitely thin wires contained within S. Under that - 1Qa
assumption the volume integrals above reduce to line integrals and the Reci- Wi s |
procity Theorem becomes (@)

where it is implied that the line integrals will be carried over all the wires and ‘
current paths located within S. J

/ I4dl-Ep = / Ipdl-Ey, 2 W,
L L 63”2
| Vf{

O We will use the convention that the current reference direction in each segment agrees ‘ ‘
with the vector direction of dl, and Egl4 as well as E4Ig vary with position along (b>
the integration paths established by the wires contained within S.

— With the current 4 of situation (a) and L = Gy + Wy + Ws + W3, we have
the reaction (of A to B)

0 o |
/IAdl‘EB=I1/ dl-EB—}—M %“/dVJAEB—%/dVJBEA
L Gh TFWa+Ws

since I4 = I in the gap region GG of antenna 1 while the electric field Eg becomes
will have a zero tangential component along the infinitely conducting wire

segments Wy, Ws, and Wi. / [1dlEp = / I5dl-E 4
— Likewise, with the current I of situation (b) and L = Wy + W + Go + W3, JL L
we have the reaction (of B to A)

/IBdl EA—M—l—Ig/ dl-E,.
1+ Wo+Ws3 Go



— Hence, the Reciprocity Theorem, the equality of the reactions, implies that
Il/ dl-Ep = ]2/ dl-Eq, = LV =LV, QED ;—)
Gl G2

=-V = -V

in terms of open circuit voltage V1 and V5 across the gaps G and G, respec-
tively, with “polarities” shown in the margin - remember, an “E-dot-dl” line
integral is always a “voltage drop” in the integration direction!

e Let’s next use the reciprocity theorem once more, as applied to situ-
ations (a) and (c) shown in the margin, in order to derive an explicit
formula for open circuit voltage Vi = Z.I5 of antenna 1 in terms of the
field radiated by antenna 2 that we will initially call E< as shown in
the margin — E¢ differs from field Eg of situation (b), as Ep con-
tained “scattered” field components caused by currents flowing in wire
segments W5 of antenna 1 which are absent in E¢.

— Starting with current 4 of situation (a) and L = Gy + Wy + Wy + W3, we
have the reaction

0
/[Adl-EC:/ IAdl-EC+W
L G1+W, 2+W3

since E¢ generated in situation (c) is shorted on wires Wy and W3, but not
at locations GG1 + W; where antenna 1 used to be before its removal to create
situation (c).

— Next with current I of situation (¢) and L = Wy + Gy + W3, we have the

reaction
/chl EA_MHg/ dl-E,.
2+Ws3 Go

because I¢ can only flow through wires Wy and W3 and across gap G (as a
source current I5) and E4 is naturally shorted out on wires W5 and Wi,

6
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— Hence, the reciprocity theorem implies that

/ I4dl-Eo = ]2/ dl - Ey
G1+Wq Go
———

_‘/2 . SHT
| B~
and since V11 = V515 this result also implies that | \ v

I |
G1+Wy G1+Wh I Wy W,

— We now have an explicit formula for the open circuit voltage V; of antenna § p ",
1 in terms of the undistorted wave field Ec = E, caused solely by Is-driven ?
antenna 2 and extraneous reflectors/scatterers (like W3) that may exist in the L f % b
environment. Since G7 + W7 = L; is the full integration path belonging to Vi g0

antenna 1, we can re-write this result as W, s
Vi = / [l(r)dl EQ(I') ( ) 7777777777777777777777777777777777777777777 S,
1= ’ : :
£, 11(0) 1 B W

in terms of incident electric field phasor Eo(r) on antenna 1 and the normal- @}b

ized current distribution 258 of antenna 1 that it carries when it is used for ,f “
transmission, as in situation (a), with I;(r) = I4 and I,(0) = I; representing T " ‘
the input current of antenna 1. O —
e The upshot: any wire antenna that supports a normalized current
distribution %) along its length when it is being used for transmission / [4dl-Ep = / Iodl-E,
L L

purposes will exhibit an open circuit voltage of

I(r)
Voz—/LI—Odl-E(r)
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across its terminals when it is exposed to a (total) incident field E(r);
the integration path L in the formula is “self-defined” by all the locations
I(r) I(r)

with non-zero . and, by definition, ]—: = 1 at the antenna feed point.

— V, is the voltage rise across the antenna input terminals in the
direction the antenna current I(r) is assumed to flow when the
antenna 1s transmitting.

— If dl and E(r) are orthogonal over the entire integration path L
then V, will be zero and the antenna will not detect such cross-
polarized fields.

e See Lecture 20 for an example of the use of this general result to com-
pute the open circuit voltage of a z-polarized dipole antenna as

VO = Ec£eff<‘97 gb) Siﬂ@

in reponse to an incident plane wave field arriving from direction 6.
Next we generalize this for any type of antenna located at the origin
illuminated by a plane TEM wave with a phasor given by

E(r) = E,e/*”

arriving from a direction

as shown in the margin.

0



e In this case

] ] ! 1.7 ]
V,=— / (r) dl-E(r) = —E, - / dlﬂeﬂf’f‘r.
L ]0 L Io

— Noting that

A A A~ A~

Ex(kxdl) = (k-dDk — (k-k)dl = (k-dDk — dl
( ) = ( )k — (k- k) ( )

1
and, thus,

E, kx(kxdl) = (k-d)k-E,—E,-dl = —E, - dl,
0 since the field is TEM

we can write

A

I / P N N ] / o5y
V,=—E, ) e _ E, kxkx ) e _ E,-p(k),
Ji I,
I L

o o

where /
p(k) =k x k x /dlmejkk'r/
L 0
is a /%—dependent voltage projection vector of the receiving an-
tenna to extract from the incoming plane wave field the open cir-
cuit voltage response of the antenna — V/, is the projection of E,
onto p(k).

A TEM plane wave E,e/%T is in-
cident on an antenna at the ori-

gin from a direction k. Note that
k-E,=0.



— For the z-polarized dipole dl = dz z and, therefore, the projection
vector reduces to

. o L2 g |
plk) =k x k x z/ dzgejkcosﬁz
L/2 0

A L/2 | )
— fsind / dz?eﬂfcosez = 00,570, ¢)sin 6,
L/2 0

with a magnitude given by the foreshortened effective length of the
antenna used in radiation electric field calculations and a direction
0 matching the direction of the radiated electric field vector of
the antenna — this is consistent with our earlier finding of V,, =
Eles£(8,¢) sinf specific for z-pol dipoles.

o With this knowledge we can always construct the projection
vector p(l%) of any antenna needed to extract V,, out of incident
electric field vector E, arriving from a direction 7 = k provided
that we know the foreshortened effective length of the antenna
and the polarization direction of its radiated electric field into

the same radial direction.

o Note that the direction of projection vector is distinct from the
direction of antenna orientation and therefore V, is in general
distinct from the projection of incoming E, vector onto the
the direction of antenna orientation.

10

Antenna open circuit voltage as

~

‘/o = Eop(k)

on terms of incident plane wave
field phasor E, at the antenna
location and antenna projection
vector

p(k) =k x k x / L) ki
L Io



e The power budget equation of a radio link between a pair of antennas
as shown in the margin is known as Friis transmission formula:

— P, is the average transmitted power of antenna 1,

— Sipe = ;%Gl is the Poynting flux incident on antenna 2 at a
distance r in terms of antenna 1 gain G in the direction of antenna
2

)

— P. = S, Ay 1s the available power of antenna 2 in terms of its
. 2 :
effective area A, = i\—ﬂGg, leading to
A2GLGy

P. = P.———— Friis transmission formula
(47r)?

Example 1: A typical GSM cell tower will radiate 10 W of average power at a carrier frequency
of 750 MHz. Assuming a 1 km direct path between the cell tower and your GSM hand held
receiver compute the received power P, assuming that both the tower and the receiver make
use of small antennas of directivities D = 3/2.

Solution: At the transmission frequency of f = 750 MHz the wavelength

¢ 3x105 300
A= 22X P oym.
7750 x 106 750 o

Therefore, using G; = Go = 1.5 in Friis Transmission Formula we get an upper bound (assum-
ing best /co-polarized orientations) of

)\ZGlGQ 04 x1.5
P=P"— =10(———)?~ 228 x 107*W = 22.8nW
“lamr)? S PTIE . !
o 2.98 x 10~
. X N
10 logyy =55 = ~16.42dBm,

11



as typically used in the RF world.

dBm stands for dB above a mW power level, eg., 3 dBm is 2 mW, 10 dBm is 10
mW, 20 dBm is 100 mW and so on.

e The power budget of a radar system is referred to as radar equation
and can be obtained as follows:

— A radar transmits an average power of P, with an antenna Gy in
the direction of an object at some distance r that will reflect a
portion of average power it intercepts from the incident Poynting

flux
P

A2

Sinc — Gt

back to the antenna.

— If the target intercepts an average power of P,y = Sin.0rcs, Where
orcs is an effective area known as radar cross-section (RCS) of
the target and re-radiates it isotropically, then the radar antenna
will receive and deliver to its matched load of an average power of

P, 1

Gioros—= A
Agrr? 2

P. =
4r

where A, = th 1s the effective area of the radar antenna for
reception.

12



— It follows that

NG?

b = Pt(4 310 ROS

which is the radar equation.

o As an example, the RCS of a square shaped PEC plate of with
a physical area Ay > A2 would be

- 2
Oplate = )\ A plate:

This can be derived by noting that the PEC plate will re-
direct the power %GtAplate that it intercepts from S;,. back
to the radar antenna with an effective gain of Gge = i—g plate;
behaving as if it were a uniformly excited filled antenna array

of area Apqe.
> Accordingly
& — ﬁll_ﬂ- 2 (GtAplat€)2 _ (GtQplate)Q
P, (4m)3pd N2 plate 4qrr? 47
for a PEC plate with a solid angle €24 as seen from the
radar site!

> Fstimating the solid angle of an airplane at 10 km dis-
tance to a airport radar as 1079 steradian and assuming
Gy = 4w x 10? for a typical airport radar, the use of above
equation would yield
b

Qair ane —
F:(Gt ] Penc)? — 1078 = —80dB.
t T

13



22 Doppler shift and Doppler radars

e Doppler radars make a use of the Doppler shift phenomenon to
detect the motion of EM wave reflectors of interest — e.g., a police
Doppler radar aims to identify the speed of a vehicle in relative motion.

— In this lecture we will describe the general principle of how a
Doppler radar works and also learn about the Doppler shift phe-
nomenon in non-relativistic and relativistic limits.

Doppler radar:

e Consider a stationary dipole located at the origin excited by a co-
sinusoidal input current

i(t) = I, cos(wt) o< ¥t 4 e = /¥ 4 ce
where “cc” refers to the complex conjugate of the term preceding it.
e The dipole will radiate a spherical wave field
E(r,t) o cos(wt — kr) o< e/ @) 4 e
where

_:C

k

assuming propagation in vacuum or air.



e Consider now a car speeding away with velocity v from the dipole along -

the x-axis having an instantaneous location Br. = B, cosfwt — k)
x(t) = x,+ vt PR
at time t. The field at the location of the car at time ¢ will then be To+ vt

(w—Fkv)t—kxzy)

o cos(wt — k(x, + vt)) = cos((w — kv)t — kx,) o< &’ + cc.

e An induced surface current o< cos(w't — kz,) on the car’s body oscillat-
ing at a frequency
W =w— kv

will then radiate like a collection of dipoles, producing a “reflected field”

o< cos(w't—kx,—k(x,4vt)) = cos((w—2kv)t—2kx,) oI ((w—2kv)t=2kao) | .

detected back at the location of the original dipole — in this waveform
we have included an additional phase delay of k(z, + vt) to account
for the return trip of the reflected wave. Clearly, the reflected field
oscillates with the frequency

W=w — kv =w—2kv
in the reference frame of the stationary dipole.

— If the dipole is arranged to detect the reflected wave field (us-
ing a T/R switch — a radar jargon implying that the antenna is

2



switched to connect to the input port of a receiving device shortly
after the transmission of a burst of EM wave), then the veloc-
ity of the car, v, can be obtained from “two-way” Doppler shifted
frequency w”. That’s how police radars work.

Note that W =w— kv

— positive v (motion away from the radar antenna) causes w” < w W — o — e
and is referred to as redshift, whereas
— negative v (motion toward the radar antenna) causes w” > w and

is referred to as blueshift.

Doppler shift in relativistic and non-relativistic limits:
e The “one-way” and “two-way’ Doppler shift formulae
W =w—kv and W' =w—2kv

obtained above, where v is the relativ radial recession velocity of the
radiator and the observer, are valid only when |v| < c.

The reason for this is, our analysis above, leading to these formulae,
neglected an important detail that according to Maxwell’s equations

we need to have

/
W W
not only 7= c, but also — =c,

k/

Tt does not matter whether the radiator or the observer is “moving” since motion is always relative.

3



. . . . /
whereas we have, in effect, used an inconsistent relation %- = ¢ at an

intermediate stage.

— This inconsistency produces a negligible error if |v| < ¢ (the usual
case pertinent for police radar applications) but the errors are
unacceptably large if |v| approaches ¢ (like in Fermilab).

e We will refer to the approximate Doppler shift formulae given above as
non-relativistic Doppler formulae — they are to be used if and
only if |v/c| < 1, i.e., in the non-relativistic limit.

e Relativistic Doppler formulae that can be used unconditionally
(and most importantly for |v/c| approaching unity) are

1 v 1 _v _ v
W= w ¢ and "= ¢ ¢
14+ ¢ 1+ y y

C

— Before deriving these relativistic formulae (correct for all v), let us
note that they reduce to the non- relatwlstlc formula if |v/c| < 1.
In that case we have, for instance,

1 -2 (1 —y)l/2

I N N <2 1/2 1/2
W W e w(l—l—%)l/? w(l — c) (1+ )
v v v
~ wll— 1D mwl-—w—k
w1 1= D w1 = Y =w— ke



Derivation of the relativistic formula:

To derive the relativistic Doppler shift formulae we will not need complicated
relativistic transformation formulae discussed in PHY'S 325 (also summarized
in ECE 329 notes). It is sufficient that we make a careful use of Maxwell’s
equations in developing an accurate model of a field reflected from a reflector
in motion as shown next:

e Consider a plane TEM wave in free-space,
Ei(z,t) = ZE, cos(wt — kx),
incident on a conducting surface at £ = 0 plane from the left such that

k=2

C

The wave will be reflected to produce
E, (x,t) = —2F, cos(wt + kx)
so that the total tangential field at = 0 plane

z- (Ei(0,t) + Ep(0,t)) = E, cos(wt — 0) — E, cos(wt + 0) = 0.

Now, what would E,(z,t) be if the conducting reflector were not
stationary on the x = 0 plane, but rather moving with a steady
velocity v to the right, having a trajectory x = vt as depicted in
the margin?

(a) Stationary reflector (in lab frame)

k;
—_—

E;. = E,cos(wt — kz)

E;, = —E,cos(wt + kz)
-
k,

(b) Moving reflector

k;
—_—

E;, = E,cos(wt — kzx)

E;. = —E,cos(w"t + k")
-—
k,




e The answer of the question raised above is quite simple: We would have
B (e,t) = 2f(t + )
where f(t) is to be determined, so that
z - (E;(vt, t) + Ep(vt, t)) = E, cos(wt — kvt) + f(t + %t) =0,
because

1. E.(z,t) = 2f(t + %) is a viable (and the only viable) Z-polarized

wave solution of Maxwell’s equations propagating in the —x di- k. yz

. . —
rection in free space, and

. . L. E;, = E,cos(wt — kz)
2. the second equation above is the relevant boundary condition to

be fulfilled on the surface of the moving reflector at every instant e~ _Focoslet +k%)

_

In time.

The boundary condition equation above implies that

1_v
f(t(lJrg)) = —F, cos(wt—kvt) = —E, COS(LUt(l—B)) = —F, cos(w f)t(lJrg)).
c c L+ < c
Thus,
f(t) = — By cos(w—r=t),
and
R x . l1—= x A " "
E,(z,t)=2f(t+-) = —ZE, Cos(cu1 C(t4+—)) = —2E, cos(w"t+k"x),
c LY



with

w":wl_% and ]{:”_—wﬁzfl_%: i
1+% c cl—l—% l—l-%
With
1 _v _ v
I/ C " C
W =w - and k" =k -
1+ 1+ 7

the reflected wave

E (z,t)=Z2f(t+ f) = —z2FE, cos(w"t + k" x)
c

wave is clearly a co-sinusoid — just like the incident wave — but
with Doppler shifted frequency and wavenumbers «” and k”, respec-
tively, caused by the motion of the reflector surface (as discussed
below). The result can also be used with negative v corresponding to a
reflector moving to the left.

e The Doppler shift formulae given above are relativistically correct —
that is, they are valid for all possible values of ¢ — even though we did
not invoke any ‘relativistic argument” above.

This is true because relativity derives from the Maxwell’s equations and the
accompanying boundary conditions, and so any rigorous deduction derived
from Maxwell’s equations will be by default relativistically valid.

k;
—_—

E;. = E,cos(wt — kz)

E;, = —E,cos(w"t + k")
—
k,




e Focusing next on the Doppler shifted frequency formula

e \/1——\/1——

1_¢ 1—
¢ with o = w
142 14

ol

ol

ol

— We now recognize the Doppler shifted frequency

"_ 1 - %
1+
of the reflected wave as a Doppler shifted version of the wave
frequency
1_v
!/ C
W =w
1+ 7

seen in the reflector frame, which is in turn a Doppler shifted
version of the frequency w of the in the incident wave field E;(x, t)
defined in the So—calle “lab frame”.

This concludes our derivation of the relativistic Doppler shift formulae
stated earlier on.

2By definition the frame where the “unprimed” frequency w is observed is the lab frame; it can also be
called the unprimed frame.

k;
—_—

E;. = E,cos(wt — kz)

E;, = —E,cos(w"t + k")
-—
k,

_



One-way Doppler shift:

When a TEM wave is observed to have a frequency w in the lab frame (and
wavenumber k = w/c since we are concerned with free-space propagation
at this point), the same TEM wave will appear to have a frequency «' in a
second reference frame which is in motion within the lab frame.

e The one-way Doppler shifted frequency w’ will be related to the lab-
frame frequency w as

W =w
1+

if the moving observer has a velocity v in the lab frame defined to
be positive in the direction of wave propagation (away from the wave

source).
e For non-relativistic speeds such that % < 1 we have )
k; 1
, v >
W ~ W(l T E) =W — kv E;, = E, cos(wt — kx)
Ir n. This simplifi ler formula 1 nderstand =~ Focoslt + )
:isn:e eady see s simplified Doppler formula is easy to understand . — %

Ei(z,t) = ZE, cos(wt — kx)

(see margin) implies that the incident field at the location x = vt of
the reflector must vary with time ¢ as

E;(vt,t) = 2E, cos(wt — kvt) = 2E, cos((w — kv)t) = 2E, cos(w't)

9



where
W =w— kv

as obtained above.

Time dilation and other relativistic effects:

® An astute student may ask at this point: “how come E;(vt, t) o< cos((w — kv)t) and
1—2
T+2
should produce relativistically accurate results (as claimed earlier on)?”

not cos(w't) = cos(w t) if a rigorous application of electromagnetic solutions

This is the sort of question Albert Einstein asked to himself in his free time at work

in a Swiss patent office and figured out that the rigorous conclusion ought to be Time dilation
2 )
— 1 — U_t’ t/ - - ’lc}_zt
2

where t' is the time kept by a clock attached to the reflecting surface.

mouving clocks
tick slower than

— The fact that moving clocks tick slower than stationary clocks (t' < t) — stationary clocks

known as time dilation — was one of the surprising results of the work Ein-
stein published in 1905 under the title “On the Electrodynamics of Moving
Bodies”, popularly known as the relativity paper. Furthermore time dilation
is a reciprocal effect since moving clocks are stationary in their own reference

frames! ) )
Longitudinal

® The relativistic Doppler shift equations given above are applicable only if/when v represents the VS
relative speed of a signal source and an observer approaching or receding along a common trajec- transverse
tory. As such these Doppler shift formulae we have learned are known as longitudinal Doppler Doppler
shift formulae.

— If the signal source moves along a trajectory not passing through the location of the observer,
then there is an additional transverse Doppler effect caused by time dilation of the signal

10



period from the source frame to the observer fram — if the source speed appears as v
in the observer frame is v, the source frequencyws will be detected by the observer, at the
instant of the closest approach of the source to the observer, at a red-shifted frequency

given by
/ 02
Woy = Wg 1-— g

before w, subsequently approaching the longitudinal red-shifted frequency

1—v/c
1+v/c

s

as the source recedes to large distances.

— Notice that |w, —ws| is much smaller for transverse Doppler than longitudinal Doppler with
|v] < ¢, which is the reason why longitudinal Doppler is the better known and utilized
phenomenon in practice than transverse Doppler. .
Accelerating

® All moving observers within a lab frame permeated with a propagating wave of a frequency w will gbhservers
detect longitudinal Doppler shifted frequencies

,_ 1—v/c
1+v/c
where v denotes the instantaneous longitudinal velocity of the observer in the lab frame — this

applies to accelerating observers as well since co-located observers side-by-side having the same
instantaneous velocities will necessarily see the same instantaneous frequency w’ Ven if their

accelerations differ (to cause different velocities and different w’ in future instances) .
Accelerating

® (Consider an accelerating Antenna A, with position z = 0 and velocity v, = 0 at time t = 0 within SQurces

some inertial frame, emitting a wave pulse of some carrier frequency w towards the acceleration

3Here is how time dilation causes a transverse redshift:
Slower-ticking clocks (because of time dilation) which are stationary within the moving source frame will measure a shorter wave period 27 /ws
than the period 27 /w, = (27/ws)/+/1 — v2/c? measured by the faster-ticking clocks of the stationary observer, to lead to wo = wsy/1 —v2/c2 —
see 'The Transverse and Oblique Doppler Effects.

4 Another way of seeing this is, special relativity (SR) is a local approximation for general relativity (GR):
GR incorporates accelerations and gravity into a relativistic framework of a globally “curved spacetime” which is locally “flat” and governed by
SR. Thus SR-based Doppler formulae also apply to accelerating observers on a instance-to-instance basis.
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https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Tatum)/15%3A_Special_Relativity/15.19%3A_The_Transverse_and_Oblique_Doppler_Effects

direction z, to be detected, at time ¢ = h/c, by Antenna B also accelerating in z direction to
maintain a fixed distance h from Antenna A. Because of its acceleration g, Antenna B will be
moving away from z = 0 with a velocity gh/c (in the same inertial frame) when the pulse is
. 1—gh/c?

W =W Trgh/2

with v = gh/c.

passing it by — this will cause it to detect the pulse with a redshifted frequenc

1-v/c
1+v/c

obtained by using the usual longitudinal redshift formula w’ = w

— Since distance h between the antennas is not changing, this frequency change is not a “kine-
matic” redshift, but it can be interpreted as a “gravitational” redshift caused by the pulse
climbing against what an accelerating observer carrying Antenna B perceives as a “gravita-
tional pull” — this follows from the equivalence principle of general relativity stating that

“being in an accelerating fram 0 is indistinguishable (locally) from being in a gravitational

field”.

The existence of a gravitational Doppler effect — which comes out from the description offered
above — in the vicinity of gravitating masses is of utmost importance in cosmology, also,
somewhat surprisingly, has a substantial impact on the operation of our own GPS syste I

5the same as the Doppler shifted frequency that would be detected by an unaccelerated (constant velocity) antenna, say Antenna C, having
the same position and velocity as the accelerating Antenna B at the measurement instant — see page 282 in Einstein Gravity in a Nutshell, A.
Zee (2013, Princeton).

Additional facts: A second constant-velocity antenna, antenna D, moving with a velocity Av in the frame of Antenna C will measure (at the
same location and instant) the same w’ multiplied by /1 — Av/c/+/1 + Av/c, which can be shown to equal wy/1 — v2/c/4/1 + v2/c in terms of
vy representing the velocity of this second antenna within the inertial frame — just add the speed gh/c of antenna C and Aw relativistically to get
va. Hence, Doppler shifts observed by non-accelerated detectors are not dependent on source accelerations — it is sufficient to know the detector
velocity within a specific inertial frame where the emitter (i.e., antenna A) of frequency w appears to have an instantaneous velocity of v. = 0 at
the emission time. Finally, for a detector in motion within the accelerated (non-inertial) frame of antenna A with some constant velocity vg and
1-v/c
14+v/c
produces an w’ due to a combination of kinematic and gravitational redshifts which can be well approximated by w’ =~ w(1 — v4/c — gh/c?) in
case of small vy and weak gravity.

distance h to antenna A at the time of pulse emission, use vq + gh/(c — vq) in place of v in the usual redshift formula W =w — this

6such as the frame in which the accelerating signal source (Antenna A) and its fixed-distance observer (carrying antenna B) described in this
example are stationary — a non-inertial frame!

Additional facts: Acceleration of a free falling box under the pull of a gravitating mass makes the box an inertial frame since the equivalent
gravitational force field within the box caused by its acceleration points in opposite direction to and cancels out the gravitational force field
produced by the gravitating mass pulling down the box — the interior of the box will have zero-gravity, things will float about and there will be no
gravitational Doppler shift of signals emitted by floating sources criss-crossing the interior of the box (although an accelerated source injected into
the box will of course produce gravitational Doppler shift in its own non-inertial frame) — see https://www.eftaylor.com/spacetimephysics/
02_chapter2. pdf

7There is also a gravitational time dilation effect described by ¢’ = t(1 + gh/c?) accompanying the special relativistic time dilation effect
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https://www.eftaylor.com/spacetimephysics/02_chapter2.pdf
https://www.eftaylor.com/spacetimephysics/02_chapter2.pdf

® How about relativistic antenna reception?

— In geometries pertinent to longitudinal Doppler shifts use P... = SincAcrs as usual but
take into account that S;,. is transformed from source frame to the receiver frame with
a factor that is equal to the square of the Doppler shift factor — as an example if the
source frequency appears redshifted from 2 GHz to 1 GHz, then the incidept Poynting flux
is reduced from 4 W/m? to 1 W/m? to be used in Pre. = SincAers formul.

® Non-relativistic Doppler equations are also valid (in non-relativistic situations) within material
media (such as in plasmas) where w/k may be w dependent.

— However relativistic Doppler equations are only applicable in vacuum, the reason being, a

frequency independent propagation velocity ¢ was assumed in the derivation of w”!

— In material media stationary within the lab frame with the refractive index n(w) the rela-
tivistic one-way Doppler formula takes the form

1—2n(w)
W= w—==——"

which reduces, with n(w) = 1, to w’ expression applicable for free Space@.

described by t' = t4/1 — v2/c2 — this is a direct consequence of gravitational redshift described as w’ = w(1l — gh/c?):

We can attribute the lowered frequency w’ of a photon climbing against a gravitational field (of a g-strength) to faster ticking clocks residing at
height h measuring a longer wave period of t' = 27 /w’ = (2 /w)(1 + gh/c?) compared to period ¢ = 27 /w of the photon at zero height (assuming
gh/c? < 1, i.e., a weak gravity). As such t/ = t(1 4+ gh/c?), telling us that time passes more rapidly at a height h above a gravitating body as
compared to time measured on its surface (h = 0), and, equivalently, time slows down as you descend onto the surface of a gravitating body. See
https://www.youtube.com/watch?v=JqKa6qyVYgg and https://www.youtube.com/watch?v=2JhQl_d4X7g

8of course Aqyy will need to be computed with the Doppler shifted wavelength.
See Holmes and Ishimaru, IEEE Transactions on Antennas and Propagation ( Volume: 17, Issue: 4, July 1969) for a broad discussion of rela-
tivistic radio links including arbitrary propagation angles measured from source velocity vectors within the receiver frames.

ge.g.7 in a plasma with n(w) = /1 — w2 /w?;

Also note that vp > ¢ in a plasma, which will be different in different “primed” frames given by v}, = -5, where n’ = , /1 — wgl/w’2 in terms of
a Lorentz contracted wgl = wg/\/l — v2/c?2 — see Achterberg & Wiersma (2007), DOI: 10.1051/0004-6361:20065365.
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https://www.youtube.com/watch?v=JqKa6qyVYgg
https://www.youtube.com/watch?v=2JhQl_d4X7g
https://ieeexplore.ieee.org/abstract/document/1139473?casa_token=piF1D5T_EhkAAAAA:wmtxoR8jsBth5HteuFVdx_pH2mFHzf-6UNZqSN2OMLEMxwSNQBvhsp3SBH5_2OakF6j4ClREr18

23 Doppler radars

e Doppler shift phenomenon is essential to the operation of Doppler
radars such as weather radars or police radars for purposes of target
motion measurements.

e In particular, the two-way Doppler shift equation
1 —
1+

ol

"
W =w

v v v
~wll——)1——)~w(l—2-)=w-—2k
w(1= D)1 =2 mwll —20) =w - 2%k

"

7

ol

non-relativistic

plays a major role because the reflected frequency w” from the moving
target is compared to the incident frequency w in order to estimate the
target velocity v.

e In many applications the non-relativistic limit applies, i.e., |[v| < ¢,
in which case the target velocity v away from the radar antenna is

obtained as ; ;
w— w Cw— W

v = = —

2k 2w

Note that when

— the target is moving away from the radar, w” is red-shifted, w —
w” > 0, and v is positive.

— the target is moving toward the radar, w” is blue-shifted, w—w” <
0, and v is negative.



Also, the above formula for v gives the component of the target velocity
in the direction of propagation of the incident wave from the radar.

Transverse motion of the radar target with respect to the incident wave
from the radar does not cause any Doppler shift.

Example 1: Police radars catch you when the magnitude of

w—uw" cw—u
v = == exceeds 70 mph — here
2k 2w P
w is the radar transmission frequency while w” is the frequency of the wave that

bounces off your car back to the antenna of the police radar.

Also v is the component of your car’s vector velocity away from the radar.

When vyour car is approaching the radar w” > w and v is negative. C()nversely when
)
your car 18 moving away from the radar w” < w and v is positive.

e Total reflection is not necessary for Doppler effect and the operation
of Doppler radars. Partially reflected waves from a moving dielectric
surface, or even scattered fields from atoms in a gas in motion re-
radiating like tiny dipole antennas excited by the incident wave, will
also produce Doppler shifted returns of the incident (transmitted) radar
signal governed by the Doppler shift formulae above.

— Meteorologists and atmospheric scientists routinely make wind

2



measurements by bouncing EM waves from atmospheric atoms and
ionospheric free electrons — also the research area of S. Franke,
E. Kudeki, and J. Makela in the Remote Sensing Lab in our Dept.

e Engineers designing police radars and meteorologists building weather
radars find themselves in strictly the non-relativistic domain % < 1.
They will routinely think of the one-way Doppler shift formula

W =w— kv
as the time rate of change of a plane wave phase
wt — kx

evaluated at the location

of a moving observer.

In a broad sense, frequency of a wave in any reference frame
is the time rate of change of the wave phase, and observers in
relative motion naturally detect different rates in a wave field.



Example 2: A police radar with an operation frequency of f = 300 MHz is located at
the origin (z,y, z) = (0,0,0). A car with the trajectory

(x,y,2z) = (50¢,50,0)
is passing by, where the coordinates are given in meter units ant time ¢ is measured
in seconds.

(a) Determine the vector velocity of the car.

(b) Determine the frequency w’ of the radar signal in the reference frame of the car,
by determining the rate of change of the signal phase detected by an antenna
connected to the car.

(c) Determine the two-way shifted radar frequency w” by considering the rate of
change of the phase delay of the reflected signal.

Solution: (a) The vector velocity of the car is

or 0 m
=& 2 50t.50.0) = (50.0.0) = 505 =
V=3¢ = 5;(°0:50,0) = (50,0,0) = 50z —

(b) The radial distance from the radar to the car is given by
r = +/(50t)2 + 502,

Therefore, the spherical wave phasor of the radar signal at the location of the car
is proportional to

i i 21502
e Jkr _ e Jka/ (50t)24-50

Y

where k = w/c = 2w rad/m. Therefore, the field at the location of the car varies
with time in proportion to the real part of

j(wt—k+/(50t)2+502)

—jkrejwt —e .

e




Thus, the phase of the signal detected by the antenna connected to the car is
O(t) = wt — k/(50t)2 + 502,

Finally, the frequency of the incident radar signal detected in the car frame is

, 00 1(2(50¢)50 + 0) 50t t

= — =W =W =W k50 .
ot V/ (50¢)2 + 502 V/ (50¢)2 + 502 V2 +1

w

(c) The field reflected from the moving car corresponds to the real part of

. . T TS
e j2k7’6jwt _ ej(wt 2k~ / (50t)24-502)

since the phase delay occurs twice over the distance r. This leads to the two-way
Doppler shifted radar frequency formula

t
t24+1

W= w— k100

Note that w’ = w” = w at t = 0 when the car motion is transverse to the propagation
direction of the incident radar wave.

Also note that the two-way Doppler shift

t
2 +1

W' —w=—k100

maximizes in magnitude at

w” — w| =100k = 2007 2 < 100 Hz

for t < —1 s and ¢ > 1 s when the car’s motion is nearly collinear with the
propagation direction of the incident wave from the radar.




24 Dispersion and propagation in collisionless
plasmas

e TEM plane wave propagation in homogeneous conducting media can
be described in terms of wavenumbers and intrinsic impedances

o , v
k= — )=k —jk" and n=
w ,u(e+jw) gk" and 7 o

Jw

= |nle’”

as we have seen in Lecture 18.

For real valued o these relations imply complex valued k and n as
well as an w dependent propagation velocity

w 1
Up =

CF Re{fule+ 2)}

Having an w dependent v, is a telltale sign that propagation
of TEM waves in the medium will be dispersive, meaning that
the shapes of TEM signals waveforms other than co-sinusoids
will be distorted as a consequence of propagation — the dis-
tortion happens because different co-sinusoid components of
the signal having different frequencies w travel with different
velocities v, and thus fall out of synchronism!

e Dispersion in wave motions can be caused by a variety of reasons in-
cluding the frequency dependence of the medium parameters as well as

1



geometrical effects related to the dimensions of the propagation region
in relation to a wavelength.

— For an ohmic medium where o is real — such as seawater or copper
— wave propagation is both lossy and dispersive.

An important propagation medium known to be dispersive but lossless
is the “collisionless plasma’”, an ionized gas in which collisions of the
charge carriers (with one another) are negligibly small — a collisionless
plasma provides an ideal setting to explore and understand the wave
dispersion effects without having to deal with complications arising
from losses and dissipation.

A collisionless plasma is essentially a conducting medium with a purely
imaginary conductivity o (or, equivalently, a dielectric with a relative
permittivity less than one, as we will see).

— To develop the conductivity model for a collisionless plasma we en-
vision a region of volume in free-space containing N free electrons
per unit volume along with N positive ions (e.g., O" in the ion-
ized portions of the upper atmosphere) which are also free. Each of
these free charge carriers with charge ¢ and mass m respond to an
alternating electric field with a phasor E as dictated by Newton’s
first law:

d ~
md_:ff =qE = mjwv =qE



where v denotes the phasor of particle velocity in sinusoidal steady-
state. With IV electrons per unit volume, each carrying a charge

g = —e with a phasor velocity v, we then have a phasor current
density )
qE N
J= Nqv = Nq(—— ):—]—qE
mjw mw

carried by free electrons only. Positive ions with much larger mass
than the electrons will also carry a similar current density, but with
a much smaller magnitude given the inverse mass dependence of
the expression for J. Hence, a reasonable model for a current
density in a collisionless plasma is

~ Ne?

J = ¢E with a plasma conductivity ¢ = —j—
mw

where the contribution of ions is neglected.

The crucial result above is that conductivity is purely imaginary —
the collisionless plasma is not a resistive but a reactive propagation
medium!

In the absence of collisions, kinetic energy of the charge car-
riers acquired from the wave field is not dissipated (lost) into
heat, but instead returned to the wave field much like energy
exchange in a circuit consisting of a source and an inductor.

e Since TEM wave propagation in conducting media is the same as prop-



agation in a dielectric with an effective permittivity
o

€+ —,
Jw

a collisionless plasma with € = €, and conductivity
Ne?

= —]—

mw

can be treated like a dielectric with a permittivity

Ne? Ne? 2
— ) | _ me | W
€0+ — = €(1 — 2)—60( __2)7
Jjw w w
where
Ne?
W, =
P me,

is known as the plasma cutoff frequency (or “plasma frequency” for

short).
With the above definitions,

2 w2

“p
1_E and n = /€, = 1_E’

are, respectively, the relative permittivity and refractive index
in a plasma treated as a dielectric, where we also have p = p, (true
because except for its free carriers, a plasma is essentially a vacuum).
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Hence, in a plasma, TEM waves are described by a wavenumber

w2
k = wy/ e = W\/[1o€o€r = W/ o€y 1——: 1—-2L

w?’
and an intrinsic impedance

¥

n = K Ho IU’O/EO _ Mo
€ eoer /i < | ’

w

[\

respectively.
e The collisionless plasma dispersion relation for TEM waves, namely

2
w wy,
k= 1 — —2
c W
derived above governs the properties of TEM waves to be encountered

in a plasma medium.

It most significantly differs from the free-space dispersion relation

L= 2

c
by exhibiting a non-linear relationship between w and k.

As a consequence,

1. The propagation velocity

3|



in a plasma is frequency dependent and a meaningful concept only
for w > w, when k is real valued (see next).

2. For w < w,, we find a purely imaginary k in which case e k=
describes not a propagating wave but an evanescent one (for
which v, is not a relevant concept).

3. The plasma refractive index

2

c W
n="oy1-22
Uy w

is real valued but less than unity in the propagation regime w > w,,
and it is imaginary in the evanescence region w < w,,.

e Topics that remain to be examined over the next two lectures:

1. The distinction between phase and group velocity concepts in
the regime w > w,

2. Evanescent plasma waves in the w < w, regime and related tun-
neling phenomena.

o We close this lecture with a brief discussion of plasma frequency w,.

Ne?
W, =
P me,

e The parameter




in the plasma dispersion relation has the dimension of frequency and
grows with the square root of the electron density of the plasma. A
useful formula for the plasma frequency is

wy = 2m f, with f, = v80.6/N

3

where f, is quoted in Hz units when NV is entered in m™ units.

— For example, for N = 10 m~3 as in the Earth’s ionosphere,

fo e 1/80.6 x 1012 ~ 9 x 10° Hz = 9 MHz

and
w, ~ 187 Mrad/s.

— A plasma frequency of f, =~ 9 MHz will have a severe impact on

EM waves in the ionosphere when the wave frequency f = == is

21
close to 9 MHz.

— The effect of the plasma on the EM wave will be negligible in the

ionosphere only when f is many orders of magnitude larger than
9 MHz.

e The plasma frequency w, also has a direct interpretation in terms of
plasma dynamics:

— If all the electrons in a volume of plasma were pulled to one side of
the volume, away from the positive ions within the same volume
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— in analogy to a stretched spring — and then let go, the electron
and ion populations would rush toward one another (because of
electrostatic attraction) and then overshoot (because of inertia)
and reverse their motions to establish a perpetual oscillation at
the frequency f,!

— The plasma frequency f, is a resonance frequency of the plasma
seen as an elastic body.

Example 1: Consider an infinite homogeneous plasma with a plasma frequency of
fp = 10 MHz. Determine the wavelength or the penetration depth — whichever
is relevant — of a TEM wave in the plasma produced by an infinite current sheet
located at x = 0 plane, if the oscillation frequency of the current density is (a)
f = 20 MHz, and (b) f = 5 MHz. Also comment whether the TEM wave is

propagating or evanescent.

Solution: (a) We have, for f =20 MHz

w w2 271 x 20 x 106 / 10
C w 3 x 10 20

407 ] 1 B V3407 B V37 rad

300 4 600 15 m

Hence, the TEM wave produced by the current sheet is “propagating” in that
case (away from z = 0 surface on both sides) and its wavelength is

27 2m 30




(b) For f =5 MHz

. g /1_w_§_27r><5><106 /1_ Q2
a w? 3% 108

_ m_”\/f \/_10” . \/_”@
300 600 60 m

where the sign giving rise to the decaying wave away from its source should be
employed. In this case the TEM wave is “evanescent” and its attenuation constant

is
\/_ 3m Np
60 m
The corresponding penetration distance (distance over which the wave amplitude
is reduced by an exponential factor of e™1) is

1
s L _ 60 _ V3,

k| V3r ow

k| =

Example 2: In Example 1, part (b) what is the attenuation rate of the evanescent
wave in units of dB/m?

Solution: The evanescent field in Example 1 part (b) will vary as
E(z) = pE,e e

in x > 0 region, where p is a unit vector perpendicular to z, E, is the field
strength at x = 0. Also,
V37 Np

k
|| 60 m




from the solution of part (b). Therefore, we have

E@=1m eH
and
E(z =0
\/§7T T m
= ——201 = —1 ~ —0.434
60 0810 € /3 0810 € /3
dB
~ 0.788 —
m

which is the attenuation rate of the evanescent field in dB/m units.

Attenuation in dB/m is expressed as the 20 log of the amplitude ratio across a one
meter distance (as we have done above), or, equivalently, as 10 log of the “power”
ratio across a one meter distance.
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25 Phase and group velocities and delays

e Propagation velocity

Up =

=~ &

of a co-sinusoid field component
cos(wt — kz) & e I*

is also known as phase velocity, because v, as defined above, cor-
responds to the speed with which constant phase points (e.g., zero-
crossings of the field) move.

e If the phase velocity is w dependent — as in dispersive media — then
field components (e.g., E,, H,, etc.), which are the superpositions of
co-sinusoids with different frequencies (two, three, several, countless),
can in general be described in terms of an envelope function and a
carrier function (recall AM modulation from ECE 210), each having
its own and distinct velocity.

— The propagation velocity of the envelope is known as group ve-
locity and it can be calculated as

O
- Ok

once the dispersion relation relating k to w is available.

Uy



— The propagation velocity of the carrier is simply a phase velocity

where we use the carrier frequency w, for frequency w, and the
carrier wavenumber k, for wavenumber k as illustrated below.

A simple example: Consider the superposition
f(z,t) = cos(wit — k12) + cos(wat — ko2)

where wavenumbers k; and ky depend on frequencies wjand w9 as de-
scribed by some dispersion relation (e.g., the plasma dispersion rela-
tion). Using some trig identities we can re-write f(z,t) as

A A
f(z,t) = 2cos( th - ka) cos(wot — ko2)

where

W1 T we _kl—l—]fg
Wo = ’ ]{70:
2 2

, Aw:wg—wl, Ak:kg—kl.

— Verification: Given the above definitions,

Ak

Aw
Wi = Wo F - and k1o =k, F ER

and so

f(z,t) = cos(wit — k1z) + cos(wat — ko2)

2



Awt — Akz Awt — Akz
#) + cos(wot — koz — #)

Awt — Akz o Awt — Akz

) — sin(wot — k,2z) sin(

= cos(wot — koz +

)

= cos(wyt — ky2) cos(

2 2
Awt — Ak Awt — Ak
+ cos(wot — koz) cos(%) + Sin(wot — koz) sin(%)
A Ak
= 2 cos(—wt — —2) cos(wot — ky2) .
N 2 2 0~ -~ z
envelope carrier

In this simplest possible example of superpositioned co-sinusoids (sim-
plest because we only used two components instead of many), both the
envelope function and the carrier function are co-sinusoids.

Assuming that Aw < wi, wsy, the carrier function cos(w,t — ky2) is

a co-sinusoid within the same “frequency band” as the superposed co-

Awt—NAkz
2

co-sinusoid residing (in frequency space) outside the signal band.

sinusoids, while the envelope function 2 cos( ) is a low-frequency

With that distinction in mind, we identify the propagation velocities of
the carrier and envelope functions as the phase and group velocities of
composite waveform f(z,t) — the phase velocity (describing the carrier

motion) is
wO

Up = )
p ko
whereas the group velocity (describing the envelope motion) is
B Aw  Wo—wi
ANk ke — Ky

Uy
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Example 1: Consider the case

Aw:& and Ak:&.
10 5
In that case
Aw  we/10 1w, 1

Vg

g = = - — U s

Ak ko/5 2k, 27
a waveform with half as large a group velocity as the phase velocity — in such
a waveform, the zero-crossings of the carrier will march through the envelope as

demonstrated by an animation on the web site.

Example 2: Determine the group velocity
 Aw
Ak

of the sum of two co-sinusoidal waves propagating in z direction if wy; = 99 rad/s,
wo = 101 rad/s and the dispersion relation is

Ug

w= k.

Solution: We can solve this problem by first obtaining kj 2 = /w1 2, and then dividing

Aw = wy — wy




by
Ak = \Jwy — \Jwi.

Alternatively, we can approximate Aw/Ak by the
partial derivative dw/0k evaluated at w, = 100rad/s

which is at the center of the frequency band flanked by w; and w».

Both approaches will give about the same result since Aw < w, and the slope 0w /0k
of the w versus k curve at w = w, is nearly the same as the ratio Aw/Ak.

Using the second method, we note

=k — =2k =2
W = % Vw
Therefore, the group velocity of the sum is
Aw  Ow m
U= R Y T W07

after evaluating at w = w, = 100 rad/s. You should compare our result above

with the exact value
Aw Wy — W1

Ak g — Jor

to convince yourself that both approaches give approximately the same result.




Example 3: What is the phase velocity of the sum signal in Example 2.

Solution: The phase velocity of the sum signal is

where

The exact value can be obtained as

Wo W1+wy Wt wr

ko kithk o+

Up:

e Practical signals used in communication applications are more compli-
cated than just the sum of two-co-sinusoids. In general, we are con-
cerned with the superposition of a continuum of co-sinusoids over finite
frequency bands Aw. How do we then define the wave envelope and
the carrier in such cases and extend the notion of phase and group
velocities introduced above? This question is addressed next:



e Consider a sum of many monochromatic waves of frequencies w,, in a
band Aw centered about a frequency w, — such a sum can be repre-
sented as

Z Re{Fmej(“mt_kmz)}
m
where F},, are the individual wave amplitudes. Introducing
Wy, = W, + Aw,, and k,, =k, + Ak,
we can re-write the same sum as

Re{ e/ (ot—Fo?) Z FmejAWm@—m)}

Suppose that the band of frequencies Aw containing all the components

wy, is sufficiently small so that the ratio

A(")771 ~ 6&) <----- ----- >
Ak Ok jw=w,

c'T‘"

is independent of index m. ko

In that case the sum above reduces to
z

Re{elt=h) f(t — =)}

Ug

with
f(t) = Z Fe’2“mt  Envelope function
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and

Ow

= — Group velocity.
ok lw=wo P Y

Uy

e The above result indicates that a wave signal

5(0,1) = Re{e’"' f(t)} = [ f(t)] cos(wqt + £(t))

observed at a location z = 0 will be observed at an arbitrary z > 0 as
2z

s(z,t) = Refed@ot=ko?) (4 Z\\ — | #(t— )| cos(wot —koz L f(t——)).

Uy Ug Uy

Such a signal’ would be called an

1. AM signal for the case Zf(t) = 0 — purely real f(t), requiring
F_,, = F} for Aw,, = mw, with m =0,£1,£2,-- -

2. Phase modulated (PM) signal for |f(t)] = const.— f(t)
e/ with |F,,| < Fy and F_,, = —F* for m = £1,£2, - - -.

The important point is, the modulation | f(¢)| and/or Zf(¢) of the AM
and /or PM signal will travel with the group velocity

o
N Ok |w:w0.

L Also, the same results apply in the continuum limit of dw — 0 in which case the sum defining f(t) in
terms of Fourier coefficients F,, reduce to an integral defining f(¢) in terms its Fourier transform F(w).

Uy
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e The propagation of narrowband signals for which the above deriva-
tion of v, is well justified — bandwidth Aw < w, — is therefore well
described by the phase velocity (for the carrier) and the group velocity
(for the modulation envelope and/or phase) concepts.

— However, for broadband signals where Aw ~ w, the constancy

of
Aw,,

Ak,
over the entire frequency band Aw will not hold, and it may be

necessary to define a set of frequency dependent group velocities
associated with sub-bands of Aw (see HW).

e In general, the computation of the phase and group velocities of narrow-
band signals requires the knowledge of pertinent dispersion relation, the

algebraic relationship between the wave frequency w and wavenumber
k.

e When the dispersion relation is known, it is useful to display it in the
form of a w versus k£ plot as shown in the margin.

— If the plot is a straight line then the waves are dispersionless and
Vg = Up.
— However, if the plot is curved (like shown in the margin), then the

waves are dispersive and the phase and group velocities v, and v,
need to be computed separately:.

9

Note that:

Phase velocity v, is the slope
of the line from the origin to
the dispersion curve at the
band center.

Group velocity v, is the slope
of the dispersion curve itself
at the band center.



e The dispersion relation

9
w w
k:—\/l——p = =00 —-u =

To obtain the plasma group velocity we take the partial derivative of

the plasma dispersion formula

k= w? — wﬁ

w = /c?k? + w2

for the collisionless plasma has a dispersion curve resembling the one o
shown in the margin — waves in a plasma are clearly dispersive.

on both sides with respect to variable k. which leads to

O 00 2 9
%(ck—w —w,) =

ow
2k = 2w——
C wak

Since

Ow
vg D

" ok

this result indicates that in a plasma

W
and v, = T

_ 2
VyUp = C

with the explicit formulas of

= ——— and Vg = C

L, wow _
kok
w2

1—w—§.

Cc.

2

4
w

Note that:

Phase velocity v, is the slope
of the line from the origin to
the dispersion curve at the
band center.

Group velocity v, is the slope
of the dispersion curve itself
at the band center.



Note that the phase velocity in the plasma exceeds ¢ at all w > w),
whereas the group velocity is bounded by c.

Einstein’s speed limit of ¢ for motions in the universe is only meant
to apply to energy, mass, and information transport — that list does not
include the phase velocity, since the phase velocity of an unmodulated
carrier is not pertinent for the transfer of energy or mass or information
across space.

— A distant light bulb can be lit by sending an electric field pulse
with an envelope which will travel the intervening distance at the
group velocity of the propagation medium. The light bulb gets
turned on only after the pulse envelope arrives at its location,
independent of how fast (or slow) the pulse carrier moves. Energy
moves with the group velocity?.

e In general, depending on the dispersion relation, it is possible to have
v, < vy as well as vy > v,

e Also, as just mentioned, it is possible to have v, < c as well as v, > ¢
(as dictated by the relevant dispersion relation).

e However, v, > c is never possible for any wave motion — if a group
velocity calculation indicates v, > ¢ in some setting, you can be sure
that the dispersion relation used for v, calculation is invalid in that

A rigorous proof that energy is transported with velocity v, in linear and dispersive media can be
found in Bers, Am. J. Phys., 68, 482 (2000).

11



setting and/or the dispersion curve has a shape that precludes the
applicability of the narrowband signal model developed in this lecture.

12
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26 Evanescent waves and tunneling

e In this lecture we will explore the tunneling phenomenon associated
with evanescent waves established within finite-width regions. IEJJ

The multi-slab tunneling result to be derived in this lecture will:

1. Enhance our qualitative understanding of the frustrated-TIR ex- —d
ample shown back in Lecture 19,

2. Illustrate a methodology based on transmaission line analo- E,
gies to be used in forthcoming lectures on waveguides.

Region 1

e Consider the three-slab geometry depicted in the margin where a TEM

wave field

E; = #E,e /*, accompanied by H; = §— Lomikiz

m
is incident from the left in the region z < —d (region 1). As a response
a reflected wave

)

_ | _ E,
E, = #E,¢'"7  accompanied by H, = —j—e/M*,
m
is set up in the same region, as well as
E, = #E. e 7" accompanied by H, = §—e /*2*
Up
and
I A koz . N E— ko z
E_=2FE "%, accompanied by H_. = —y—e/"%,
Uy

1



in the region —d < z < 0 (region 2). Finally, in region z > 0, we will
have

- A . . - AEt .
E; = 2 E,e /%% accompanied by H; = y—e Jksz

3
— Our aim is to determine the amplitudes F;, £, E_, E, in terms
of E; using tangential boundary conditions at z = —d and z = 0.

— We are in particular interested in the ratio of the transmitted
power in region 3 to the incident power in region 1 as a function of
slab width d as well as the refractive indices nq, ns, and ngz, includ-
ing the case when ns is purely imaginary, the case corresponding
to region 2 being in evanescent mode.

e Starting with the boundary at z = 0, the continuity of tangential E
and H across the boundary requires that

EF,.—FE_ E
EF,+FE_ =FE, and +—:—t.
)2 3

These equations can be solved for F; and E_ in terms of F, to obtain

2 _
E, — Z?’ E, and E_ = . g
113 T 71)2 13 T 7)2
732 I'3o

Note that we have defined a pair of coeflicients representing the in-
teraction at z = 0 interface: a transmission coefficient 735 and a

2

A

Region 1




reflection coefficient '35 in terms of intrinsic impedances n3 and 7
in a manner analogous to similar relations seen in our studies of trans-
mission line (TL) systems (in ECE 329).

At the boundary on z = —d plane the continuity of tangential E and
H requires that

Eiejkld + Ere_jkld = E+ejk2d + F_e ik

and 4 ‘ . ‘
Eiehd — Bleihid B eikd B emikd
Uil B 712
respectively. To utilize these relations in a close analogy to TL problems
we next define an effective field impedance Z(—d) for the z = —d
plane as
Eiejkld + Ere_jkld 1+1y B Ere_jkld
Z(—d) = Eiejkld—ETe—jkld = 7711 — le where Fgl = —Eiejkld .

m
But, by the boundary condition equations above it is also true that

| | | B |
Z(—d) = Byt 4 B_emihd LH TR 1 4 Tggei
T Eielkd_p_e—iked 7721 B E_e—.j/@d o 7721 — Type—i2kad’

7?2 B, elkad

Solving the above expression for the reflection coefficient I'9; at z =
—d plane in terms of impedance Z(—d) we find that

Z(—d) —
Z(—=d)+m

3

1—121 -

ny
A -
: B
—
Region 1 Region 2 Region 3
'y = 2(72) — F32 _ N3 — 12
_ti_)# 13 + T2
m 2 3
1+ F3267‘72k2d Z(0)=mns
Z(=d) =y~ i
Region 1 Region 2 Region 3
Fgl = i(_j) /L F32 _ N3 — 12
(—d) +m 3+ 12
m 2 Zr =13

—

1+ F3267j2k2d
Z(_d) o 7721 _ F32efj2k:2d



e The parameters I'3p, Z(—d), and I'y; introduced above, bearing a strong
analogy to an equivalent TL problem suggested in the margin, are suf-
ficient to calculate the reflected and transmitted powers in our multiple
slab problem as follows:

. We first note that
Ere_jkld
El-eﬂfld

<S7’> _ ‘Er‘2/2771
(Si) B /2m
gives the reflectance, the fraction of the time-averaged incident power
density reflected by the slab discontinuity back into region 1.

Dot ]? = | ? = = |To1)?

. Assuming that the slab in region 2 is lossless, the transmittance, the
time-averaged power density transmitted into the region 3 has to be

(5) = (Sh— (50} = (Sy1—[Tof) = 2 NBL2B g jp e

(Si)  |Ei?/2m

The upshot is

(Sr) ) (Sh) )
<Sz> \ 21\ all <Sz> | 21|
where
[y — Z(—d) —m 14 Dype /2 3=

—d) = : oo =
Z(—=d)+m’ (=d) 7721—1326_92’@2617 7 N3 + 12

in analogy with an equivalent TL problem. An extension of these rela-
tions to an n-slab configuration is straightforward.

4

Region 1 Region 2

T

Z(—d) =

T2

1+ F3267'72k2d
N 7721 — F32€_j2k2d

Region 3




Example 1: Assume that regions 1 and 3 are free space whereas region 2 is a plasma
slab of some width d and a plasma frequency f,. Determine and plot the trans-
mittance

(St)

(53)
as a function of d if (a) f =2f,, and (b) f = 2,

=1— [Ty

Solution: (a) In this case the plasma refractive index in the slab is

f2 4 16 3
CRTL S ST B

Hence, with 1 = 13 =1, and 1y = 1,/n9 = 51,/3, we have

5
o~ 9lfo 3_5 2

Ty = 3% — - =-025
Mo+ 3M 3+9 8

also, with real ky = %\—Z, we have

1+ Tgpei2kd 5 1 _ .25 9475
- = —770 - .
L= Tgpe 2t 370 1 0257915

Z(_d) =12

A plot of the transmittance 1 — |T'y1|?* versus d/\g, where

Z(—d) —m

Ty = =Y~
LT Z(=d)+m

Transmittance curve for part
(a) when region 2 is in prop-
agation mode:

Transmittance

1.0

08 W
0.6

04[

02+

. . . . .
0.0 0.2 0.4 0.6 0.8 1.0



and produced by a Mathematica code of these equations is shown in the margin.
The transmittance shows a \o/2 periodicity in slab width d in consistency with

the periodicity expected for lossless TL systems.

Solution: (

b) In this case the plasma refractive index in the slab is

25 9 3
2 16 V16 1
Hence, with n; = 13 =1, and 1y = 1,/ns = j%no, where we have used ny = —j%,

we obtain 9 .
Mo —J3"Mo _ 3 —4j
o+ Jgne  3+4]
having a unity magnitude. Also, ks = kny = —;3k/4, and we have

1+ 1"32e—j2k2d 4 1+ g;_jge—ih'd/)\

— 2 - — - A .
' 1 — Dgpe—i2k2d 337701 _ §+_ilée—3wd/x

I'so =

Z(=d)

A plot of transmittance 1 — |y |? versus d/\, where

Z(—d) —m

Z(—d) +m

and produced by a Mathematica code of these equations is shown in the margin.

I'y) =

Note the strong tunneling effect at small d/\. The choice of ny = j % would
also have resulted in the same plot even though the expressions for I'so and ko

would have been changed.

Transmittance curve for part
(b) when region 2 is in
evanescence mode:

Transmittance
1.0

08+
0.6 -
0.4

02}

I I .
0.2 0.4 0.6 0.8

Note that adjusting d/\ to
about 0.2 sets the transmit-
tance as /2, creating in effect
a “beam splitter” in reference
to our discussions of prisms
and tunneling in Lecture 24.



e A fascinating aspect of tunneling is:

— even though the time-averaged Poynting vectors — i.e., the avg
power densities — associated with the evanescent wave fields E
and E_ in region 2 are individually zero because of the 90° phase

shift between

E_|_ and I:I_|_

the time-averaged Poynting vector associated with E. +E_, i.e.,

~

as well as E_ and H_,

%Re{(iﬁ)+ L E ) x (H, + H))

pertinent for region 2, is (as shown in HW) non-zero (and inde-
pendent of position within region 2) because of the non-zero cross

term contributions between

E. and H_

o By contrast, in propagating regions (i.e., non-evanescent), the
cross product terms cancel while “self product” terms deter-

~

as well as E_ and H..

mine the net average Poynting vector.

There are many practical implications and applications of tunneling:

— Beam splitters, attenuators, (undesired) interference effect due to

coupling of nearby systems

7

Quantum mechanical
tunneling:

In quantum physics one talks
about probabilities of encounter-
ing particles in a given physi-
cal system rather than the par-
ticle trajectories; furthermore,
the probabilities are calculated
as magnitude squares (like the
average power) of “wave func-
tions” obeying a wave equation
(e.g., Schroedinger’s equation in
case of non-relativistic particles).
Since waves in general (includ-
ing Schrodinger waves) can ex-
hibit tunneling properties across
evanescent regions (as shown in
this section), finite probabilities
can be calculated in quantum me-
chanics for particles in regions
separated from their source re-
gions by classically impenetrable
barriers (in which the wave func-
tion is evanescent).

Phenomena such as radioactive
decay or Ohmic contacts (in
metal semi-conductor junctions)
can be explained in terms of
quantum mechanical tunneling,
a counterpart of electromagnetic
tunneling studied in this section.
Also, quantum mechanical tun-
neling is fundamental to the op-
eration of “scanning tunneling mi-
croscopes” used to image atoms
and crystals.



e The transmission line analogy to solve a four-slab problem:

Region 0 Region 1 Region 2 Region 3
_Z(=d—=1)—mno
NSz
[y = —Z(_d> —'n N3 — 12
21 — _ F32 —
Z,( d) +m m3+ 12
L

H |_>_J
1+ F216_j2k1l ‘

Z(—d—1) =1 _ it T
( ) 11 — F21e J2k1l Z(_d) 7721 . F326 72kod
e . B >
[ d

— The relations shown on the diagram can be used to calculate the
transmittance 1 — |['jp|? from region 0 to region 3 assuming that
regions 1 and 2 are lossless.

Example 2: If in the above diagram region 3 is evanescent what would be the trans-
mittance 1 — |T'yo[*?

Answer: In that case the transmittance should be zero (and reflectance unity) corre-
sponding to a purely reactive Zj = 13!




Tunneling at oblique incidence

e Our analysis of tunneling and frustrated-TIR at oblique incidence will
amount to analyzing the three-slab geometry shown in the margin with
interfaces at * = —d and x = 0 surfaces separating media with refrac-
tive indices n1, ng, and ng, respectively.

e Assume that medium 1 has TE-polarized incident and reflecting electric
fields superposing as

QE (6—jk1(sin91z+00891x) i Re—jh(sinﬁz—cos@w)).
)

)

the field in medium 2 is

:l)E (Pe—jkg(sin 09 z+cos Oox) + Qe—jkz(sin 092 —cos ng))
0

)

and in medium 3 we have

QE’ Te—jkg(sin 03z+4cos O3x)
0 .

e In medium 1 the z component of total H is

L,

COS 91(6—jk1(sm91z+c0391x) _ Re—jkl(smﬁlz—cosﬁlx)),
m

)

in medium 2 we have

E o -
9 cos 92<P€ Jko(sin fpz+cos ox) Qe Jka(sin fgz—cos sz)>,

T2 ’
9

Meditm:1

Medium 2

Medium::3




and in medium 3

L,

13

COS 93T6—jk53(sm 03z+cos O3x) '

BC’s applied at x = —d and x = 0 require a “phase matching”, that is
k1sin @) = kg sin 6y = kssin 63,
leading to Snell’s law relations
nosinfy = nysinf; and nssinf; = ng sin b;.

Matching the tangential E and H at z = 0 boundary vields

P—-Q T
P =T with =
T o ne/ cosby M3/ cos b3

implies
P-Q  P+Q N Q_ng/coseg—ng/coseng
1o/ cos By 13/ cos O P m3/cosfs+my/cosbs 52

defining an effective “load reflection” coefficient for this problem.

Transverse field matching at = = —d requires for E and H

ejk100891d+ Re—jkl costhd __ Pejk200892d+ Qe—jk‘gcos@gd

and

1 jk1 costid —jkqy cosO1d 1 jko cos bad —jko cos Ood
— cos by (e —Re ) = — cosby(Pe —Qe ),
m 12

10

Meditm:1

Medium 2

Medium::3




respectively. Now define transverse field impedance

Z(—d) B Ey B Peikacostad | Qe—j/@ cos tad ) 1+ F32e—j2/{32 cos Ood
HZ Pe-]k2 COSG2d/_Q69—jk2 C0802d COS 92 1 _ F326_']2k2 COS@Qd
12/ cos b
and
ik 01d —jk 01d
Z(—d) = Ly, MR ReT /My 141y
HZ eJk1 cos@;d/_iﬁs,—ejkl cosf1d COS 91 1 — F21
1 1
where

Re—jkl cos 61d
Fgl =

ejk:l cos 01d

o Clearly |y |? is the reflectance (fraction of incident power density in
the reflected wave) and 1 — |T'y1]? is the transmittance, wherein

Z(—d) —n1/ cos by

[’y = :
2! Z(—d) — ny/ cos b,

These results suggest the use of transmission line analogy in
terms of characteristic impedances 7,/ cosf; and k,; = k;cos6; in
phase terms. Note that in evanescent regions cos6; are purely
imaginary. Also quarter-wave transformations can be used when
dcos By = Xy /4 and half-wave transformations when dcosfy = Xy /2.

11



e For the TM case, the use of n; cos6; in place of 7;/ cos6; in reflection
coeflicient and impedance calculations leads to the correct reflectance
and transmittance values (same trick would also work in TE and TM
Fresnel reflection coefficients in oblique reflections from a single inter-
face as well as in guide impedance formulae where cos 8 is replaced by

V1=211?).

Here are the details:

— Matching the tangential H and E at z = 0 boundary yields
P+Q =T with —nycosby(P—Q) = —n3cos 03T = —n3 cos O3( P+Q)

implying

6y — 0
ng cos Oo( P—Q) = n3 cos O3( P+Q) = @ _ mcosty m iy cosbs —1I'39

P nycosby+mzcosly

defining an effective “load reflection” coefficient for this problem.
— Transverse field matching at x = —d requires, for H and E,

e]k100801d+ Re—jklcosﬁld _ Pe]kQCOSHQd_I_Qe—ijcongd

and
—1]1 COS 91(691{;1 oS Hld—Re_]kl COS@ld) = —1)y COS 92<P€j]€2 cos 92d_Q€—jk2 cos Hgd)7

respectively. Now define transverse field impedance

—F. 1) COS 62(P€jk‘2 costhd __ Qe—ij Cos di) 1+ F326—j2k52 cos fod
= : : = 1y cos b :
Hy Peikacostad + Qe—]kQ cos od "2 21 _ 1“326—]%‘2 cos fod

12

Z(—d) =



Z(—d) = —Fk,  micos 0, (/"1 costrd _ Re=ik1 Coseld) _ 0 Ll
(—d) = H, B eikicosthd 4 Re—jkicostrd = oS - oy
where :
Re—jkl cos01d
[o1 = — ejk1cosO1d
— The upshot is,
. Z(—d) — m cos 0y
21 =

Z(—d) + ny cos b

wherein we see the replacement of all 7;/ cos§; in TE-mode rela-
tions by n; cos 6; to become the corresponding TM-mode relations.

13



27 Parallel-plate waveguides — TE,;, modes
With this lecture we start
our study of guided waves

e Consider a TE polarized incident field and resonant cavities.
~ In ECE 329 you were already
Ei — @Eoe_j(_kxx+kzz> exposed to guided TEM

wave propagation in two-wire

transmission line systems.
reflecting from a conducting plate on = 0 plane as depicted in the Here we will study TE and
TM mode propagation on
parallel-plate transmission-
N . lines and hollow waveguides.
E, = —gE, e/ kortk:2) While guided TEM modes
are dispersion-free and prop-

margin so that a reflected wave

) A ~ ~ agate at all frequencies, TE
is produced to ascertain & X (E; + E,) = 0 on x = 0 plane. In these and TM modes are disper-

sive and exhibit frequency-

expressions
P dependent cutoff.

ko4 k2 =k = wlpoe,

assuming that the plate is embedded in free space (otherwise use p and
€, instead).

e The incident and reflected waves will then produce a total field

E=E,+E, = g)EOe_j]W(eﬂ“‘;ﬂj — e_jkf”x) = Qj@Eoe_jkzzsin(kxx) o — o0 z
in > 0 region which propagates in the z-direction with a phase ve-
. Intersections of solid and dashed wavefronts
IOClty of the incident and reflected waves demark
w tk}e locations of thg nulls of the total y-
v - directed electric field.
pz
k.

and “stands” in the x-direction.



e The standing wave in the z-direction is characterized by a tangential
electric field component

E,(z,z) o sin(k,x)
which has nulls at all > 0 satisfying

mm _
k;x =mnm = x:k— forintegersm =1,2,3,---.
X

e Likewise, the tangential component at z = a,

~

Ey(a, z) o sin(k,a),
will vanish for all &, satisfying

mmT . .
k.a =mm = k,=— forintegersm =1,2,3,---
a

e Hence
E = 2jyE,e 7/ *sin(k,x)

can be regarded as a steady-state solution of Maxwell’s equations in
between PEC plates located at x = 0 and x = a so long as satisfies a

“guidance condition”
mi

k, = — forintegersm =1,2,3, -
a

This is true because

The y-directed total electric field is zero
at x=0 and x=a surfaces of the guide formed
by the conducting plates and exhibit maximum
magnitude at the intersections of solid or
dashed wavefront pairs.

Note the 180 degree reversals in the
reflected phase fronts on both surfaces
(top and bottom)as required by a reflection
coefficient of -1.



— E o gsin(k,x) satisfies Maxwell’s boundary conditions of zero

tangential electric field at the PEC surfaces z = 0 and x = a, e
— B  gsin(k,x) satisfies the Maxwell’s equations in the channel .
O<z<a a
e These are designated as “TE,, mode” solutions and m = 0 case is ex-
cluded because k, = mm/a = 0 for m = 0 leading to E o ysin(k,x) = ;’
0. T =00
e Guided TE,, mode waves with electric field phasor The y-directed total electric field is zero

at x=0 and x=a surfaces of the guide formed
by the conducting plates and exhibit maximum
magnitude at the intersections of solid or

E — QJ@EOG_]]{:ZZSIH(]{J;J;) dashed wavefront pairs.

Note the 180 degree reversals in the
reflected phase fronts on both surfaces
(top and bottom)as required by a reflection

in region 0 < x < a with “quantized” coetficient of -1.
mm
k, = —
a
will have
2 2
N s RN SR wWiol1_Ye
z T kQ 27
c W
where
mmc
w, = k,c = ——
a

is known as cutoff frequency of TE,, mode.



— The corresponding field in the time domain is obtained by multi-

plying the phasor with e/“' and taking the real part, yielding

E(z,z,t) = —29F,sin(wt — k.2)sin(k,x).

Since propagation of the TE,, mode field is controlled by k,, the

f2
‘/1_3 Ml_ﬁ’

mmc W,
—— and = =
a Je= o' 2a,

is the dispersion relation of the TE,,, mode, from which it follows
that:

relationship

where

w, = k,c =

. Propagation takes place if f > f. = 2%, and evanescence oth-

erwise, and

. Phase and group velocities

C 8w
= — d
an ’Ug k

1 _ L2
s

in analogy with plasma dispersion (identical except for the inter-

f2
A

had
ke

change of w, with w,).

Example:
for a = 3 cm, m = 1 implies

_ me 3% 108
Je = 20 2x0.03
= 5x 10°Hz

= 5 GHz

for TE;mode.

The  cutoff  frequency  for
TEo;mode is 10 GHz, for
TEsmode is 15 GHz, and so on.
A signal with 11 GHz fre-
quency will propagate in TE; and
TEs;mode, but will be evanescent
in TEzand higher order modes.



e The component TEM waves that satisfy the condition

W
AM=c & —=c
/ k x
and superpose to form the TE,, mode have a wavelength, for o — oo
me ¢ T
f - fC - %7 N o

given by

c c c 2 =S

,X = —= — = — = — = ;XC'

mc
S Je % m
. . . Note that cutoff—wavelength=2§/m is also
Consequently, the TE,, mode dispersion relation can also be cast as the "trace wavelength' in x-direction.

2w c? A2
o=y f1—de =21 -2
2 ¢ )\ng c A2

note that:
1. The “cutoft wavelength”

Lo
m

can be remembered to be “twice the guide width a divided by the
mode number m”,

2. The factor can be used to replace the factor < F ¢ that appears in
all of the expressmns given above (and below).



3. Finally, since k, = =% we have

at any frequency f.

e Fach permissible k, (or mode) at a given operation frequency w is
associated with an incidence and reflection angle € (see margin) of the
component TEM waves superposing, which is given by
9 k. A A fe LA 1 fe
cosf = —=—=—== — =cos =
koA A S Ac f
indicating that as f — f., 8 — 0, that is at f = f. (at cutoff), the field
consists of plane waves bouncing back and forth between the plates at
r =0 and x = a at normal incidence (see margin).

= 0 = cos~

Component waves superposing to constitute the guided field can be
viewed as reflections of one another from the guide plates, produced
(self-consistently) by surface currents induced on the conducting walls
of the guide at x = 0 and x = a. The guidance condition restricts this
to component waves with k, = “% m =1,2,3,---.

At cutoff (f=f c) we have k_z=0 and thus
TEM waves bouncing between the plates in
exclusively x direction, carrying no energy
in z-direction.

Guide wavelength: The com-
ponent TEM waves that super-
pose to form the TE,, mode so-
lutions have a wavelength

_27r

A=

as usual. We define

2 B A
2 - 2
Rji-% J1-4
to be the guide wavelength A,.
Note the distinction between

Az

2T
k.

2w
)\g: ]{;_Z =\,
and 5
T
)\c: 7 :)\m
ky



e There is an alternate way of obtaining the same guidance condition

ky="% m=1,2,3,- - using the following steps: & Pay close attention to this
method.
— The guided TE,, modes propagating in z direction are superpositions of inci-
dent and reflected TEM plane waves

Next lecture we will use it to
derive TM modes.

EZ' _ gEoe—j(—kmx—l—kzz)
and
E, = jE, e karths2)

where I' = I'| = —1 is the TE-mode reflection coefficient appropriate for an
air-PEC interface.

— Since for the permissible guided modes, TEM wave E, gets reflected (once
more) at x = a to become E; at the same location, it is necessary that

(QEol—‘e_j(kwaH_kzz)) |x:aF = (QEoe_j(_kmx—’—kZZ)) |z=a

implying that
‘F‘26324I‘e—jkwa — ejkmae—]%m

must be permitted with any integer n such that e /2™ = 1.
— This, in turn, is possible if and only if |I'| = 1 and
2/1" — kya=Fk,a—2mn = kya=/Z1+nm=mm,

withm=n+1since /' =/—-1=m.

— Hence

where any integer m that leads to a non trivial superposition of component
waves should be considered, i.e., m =1,2,3,---.



Example 1: TE,, mode fields have transverse electric field phasors
E = 2jjE,e /**sin(k,)

satisfying the zero-tangential field conditions at x = 0 and x = a planes with

mim w [, f?
kaTandkzzz 1—F

mc

Je= 54

(a) Determine the magnetic field intensity phasor H for TE,, mode waves. (b)

where

Also determine nrp = _E}‘} , which is the effective guide impedance for TE,,, mode.

Solution: (a) Using Faraday’s law, we have

9 9 9
dr Oy 0z
- \OE, | ,0E,
g VXE_[0 B O] —272+ 25
—JWio —JWio —JWio

2EO A . . ~ —7
= —Z2(#(jk. sin(k,x) + 2k, cos(kyx))e I*>,
w

(0]

(b) Using the result of part (a), we have
E,  2jE,e%%in(k,x)

TE — — = ; : ;
K —H, iﬁ"j k. sin(k,x)e=ik=>
B 1 B Wiko B Mo
1 o 7 2
Wito kz %) 1 - % - %




28 Parallel-plate waveguides — TM,;, modes B

e Last lecture we discussed the TE,, modes of propagation in parallel-
plate waveguides.

e These guided modes have y-polarized electric fields transverse to the

propagation direction z and exhibit a standing wave pattern in a- g =00

direction with m half-wavelengths of variation between the guide plates
at x =0 and z = a.

— More specifically, the TE,, modes have transverse electric field

phasors
E = 2jyE,e 7/ *sin(k,x)
where
mi
k:L’ =, m= 17 27
a
and

Yy 1_§_j

with cutoff frequencies
mc

Je =%

Alternatively (and equivalently),

)\2
= /K — k2 = “F’

Superposing all TE,,mode fields
with amplitudes E,, (to stand for
2jE,), m € [1,00], we can write

- - mm
E(z,y,0) =y E,, sin(—=x
(,9,0) ymZ:l ()
which is in the form of a
Fourier series, implying that any
E(z,y,0) periodic in x with a
period 2a can be expressed in

this format as a superposition of
TE,,mode fields.

Such fields can be generated
within a waveguide using a small
dipole or loop antenna — more on
this later!



with cutoff wavelengths

2a
Ae = —.
m
Above, the operation frequency f and operation wavelength A
satisfy A f = ¢, and furthermore

k=21 —
A

is the operation wavenumber. The propagation characteristics of
the guided mode, on the other hand, depends on k., with

2T W
c

2
vp:% and )\g:k—ﬂ

denoting the phase velocity and the wavelength of the guided mode
when
f > f. and, equivalently, A\ < A.,

corresponding to propagation condition for a given mode. When
f < f. and, equivalently, A > A.,

the mode is evanescent.

— Since

/ey 1_}“_2



is effectively the dispersion relation of the guided modes having
the same form as the plasma dispersion relation, it follows that
the group velocity is

ow / 2 5
UQ:@/{:Z:C 1_F and wv,v, = c

just like in plasmas.

— Finally TE,, mode fields have a guide impedance
L, o

UTE——Hx— >

relating the transverse field components of the wave.

e Next we turn our attention on TM,, mode fields which share most of
the dispersion characteristics of the TE,, mode fields. However, they
are essentially orthogonal to TE,, mode fields and furthermore support
the m = 0 case which is absent for TE,, modes.



e TM,, mode guided waves propagating in z direction correspond to su- |x
perpositions of incident and reflected TEM plane waves with

~

Hi _ gHoe—j(—kx:L'—l—k‘zz) a

and

~

HT _ QHOFe—j(kxm—l—kzz)

0 =00
where I' = R = 1 is the TM-mode reflection coefficient at an air-PEC
interface.
For permissible TM,,, modes H, gets reflected (once more) at z = a to
become H; at the same location, and thus it is necessary that The same self-consistency condi-
tion of guided waves of any polar-
1 ization by any type of channel of
a width a can be posed as
gHOFG_.](kaL—szZiF gH ( kxa—szZle_jQﬂ'm |1—x|2e—j2kwa — e—j2(m7r—41“)’
Hr(aj —= a) Z) H ( a ) satisfied iﬁ
: : II'| =1 (TIRor reflection from PEC)
for any integer m, i.e.,
and
‘F|26]24F6—]k5$a _ 6]k$a6—]27rm. K = mﬂ—ZF’
a
- . . . known as the guidance condition.
This is possible, since |I'| = |R| = 1 and ZI' = ZR=0, with
_ kx a = kxa} —29mm = kxa} = m, Permissfible modes 'in d.ielectric
waveguides can be identified us-
lead; ing this guidance condition once
cading to m /TI" variation with k,/k is speci-
k.’lj:—) m:O’]»,Q"" fied.
a

as the guiding condition for TM,, modes.
4



e Since for TM,,, modes the transverse field
H=H, + H, = 2H,e /"*cos(k,x)

does not vanish with vanishing k., the m = 0 mode is permitted. In
tact, TMy mode corresponding to m = 0 is the TEM mode studied in
EEC 329 in transmission line (TL) theory.

— TMy=TEM consists of wave fields

_ | 3 E,
E=3iE,e '™ and H=g—e /"
Mo
which naturally satisfy the boundary conditions at x = 0 and

x = a planes of having zero tangential electric field.

— Also, for this mode
k,=0 and k, =k,

which follows when m = 0 is permitted in dispersion equations
when applied for the case of TM,,, modes.

Superposing all TM,, mode fields
with amplitudes H,, (to stand for
2H,), m € [0, 00], we can write

H(z,y.0)=§ > Hn cos(?x)
m=0

which is in the form of a
Fourier series, implying that any
H(z,y,0) periodic in = with a
period a can be expressed in
this format as a superposition of

TM,,,mode fields.

Such fields can be generated
within a waveguide using a small
dipole or loop antenna — more on
this later!



Example 1: TM,, mode fields have transverse magnetic intensity phasors
H = 2)H,e 7% cos(k,).

(a) Determine the electric field phasor E for TM,, mode waves. (b) Also deter-
mine nyry = H , the effective guide impedance for TM,,, mode.

Solution: (a) Using Ampere’s law, we have

T oy Z
2 9 0
E:VXI:I: %%y% _ @8;{94_ Z
JWeo JWe, JWe,
= joiz (2(jk. cos(kyx) — 2k, sin(kyx))e 7%

(b) Using the result of part (a), we have

E, jwe Ho 5k, cos(kya)e k>

" H,  2H,e 7%= cos(k,x)

k. \/1_F 2

_ _ — oy [1 =12
We, We, " 12

e Note that the results obtained in Example 1 give non-trivial results for

m = 0 case with k, = 0 and k. = k.
e TMy=TEM mode has no cutoft frequency and it is non-dispersive. It

6



has all the properties of the unguided TEM waves we are familiar with.

e Finally, regarding dispersive TE,, and TM,, modes with m > 1, all the
equations derived above can also be used when the guiding plates are
embedded in dielectric media (instead of air) by simply replacing

1 _ 1
with v, =
vV Ho€o VAZS

in the dispersion equations.

C =

o There is a straightforward geometrical interpretation of v, obtained for
guided TE and TM modes.

— Clearly the component TEM waves which constitute the guided
modes (TE and TM) propagate at angles +6 with a velocity ¢
in air-filled waveguides. The projection along z of the velocity
vectors pointing in £6 directions are

1.2 / 2
csinf =c\/1 —cos2f =c 1—k—§:c 1—%,

which is of course the group velocity of the guided modes as we
have seen before.

This makes sense: in the component TEM waves — which are non-
dispersive — of the guided modes, the phase fronts as well as any
imposed modulations move with the same velocity, namely c.

7



— While the progress of modulation on the component waves along
+60 occurs at a velocity ¢, the modulation covers a shorter distance
along z than the corresponding slant distance along +6, and thus
v, measuring the progress of the modulation along z is smaller
than ¢ measuring the same progress along +6.



29 Parallel-plate waveguides: example problems

Summarizing the properties of guided modes of propagation in parallel-plate
waveguides:

e TE,, and TE,, modes with the transverse field phasors

E = 2j)Ee /**sin(k,z) and H = 2gH,e /**cos(k,z),

respectively, where

)\2
ko= 20 and k, = /R 1——: Wl_v
a

with cutoff frequencies and wavelengths

2
=2 and A =2
2a m’

respectively, satisfy the zero tangential E boundary conditions on z = 0
and x = a plates of the guide.

— TEy mode does not exist but TMy=TEM does and it is disper-
sionless.

— All TE,, and TM,,, modes are dispersive for m > 1, and propagate
only if f > f., or, equivalently, A < A..

— Non-propagating modes are evanescent and have an attenuation
constant |k.|.

a




e Also TE,, and TE,, mode fields have guide impedances

E, Mo E, f?

= = d = — = 0 1 _
Nre = — I \/j and mry H, U 12
f2

relating the transverse field components of the guided modes.

All the results summarized above are for air-filled waveguides, but they can
be readily modified, by replacing ¢ and 7, with ¢/n and 7, respectively, in
the case of dielectric-filled waveguides.

Example 1: Consider a dielectric-filled parallel-plate waveguide with a = 2 cm. The

permeability of the dielectric filling is u, and its refractive index is n = 1.5.

1. Which TE,, and TM,, modes can propagate a 12 GHz signal in the waveg-
uide?

2. What would be the associated cutoff wavelengths in each case?

3. What would be the associated group velocities in each case? — here assume
a modulated 12 GHz carrier with a narrow modulation bandwidth.

Solution: Unguided propagation velocity for the dielectric filling the waveguide is

1 8
szzwzgxl(ﬁg.
n 1.5 S
Using v in place of ¢ in the cutoff frequency formula for TE,, and TM,, modes

we find

muv  m x2x10%cm/s

o 5 % % om mb x 10° Hz = 5m GHz

fc:

2



1. f = 12 GHz exceeds the cutoff frequencies of TE,, and TM,, for m = 1 and 2,
but not 3. Therefore, the propagating (i.e., non-evanescent) modes at f = 12
GHz are TM,, TE{, TM;, TEs, and TM,.

2. Cutoff wavelength are given by the equation

Ao =22

m

and do not depend on the dielectric filling. They are, with a = 2 cm,
Ae = 4cm for TE;=TM; and A\, = 2cm for TE,—=TM,.

The cutoff wavelength is oo for TEM mode (which does not have a cutoff condi-
tion).

3. Group velocities are given by the equation

2
Vg = 1_F

where v = ¢/n. For the non-dispersive TEM mode with f. = 0 the group velocity
is vy = 2 X 10® m/s. For TE; and TM; modes

52
vy =vi]1— T35 = 182 10%m/s.

For TEy5 and TM, modes

102 .
Vg =0 1—@:1.11><10 m/s.




Example 2: Consider an air-filled parallel-plate waveguide with a = 3 cm. Calculate
the guide wavelength A\, or the attenuation rate in dB/cm of the TE; mode in
the guide — whichever appropriate — if the operating wavelength of the mode

is (a) A =3 cm, and (b) A = 12 cm.
Solution: The cutoff wavelength of TE; mode in the guide is

A = 2a 2 X 3cm _ 6em.
m 1

(a) For A = 3 ecm, A < A, and, therefore, the TE; mode is propagating. The
propagation constant, that is k., is

A2 27 A2
[T Ty Ay
VT e

and the guide wavelength is

)\922_7'(: A B 3cm 3cm 3cm /3 em

SERVEE R Y Tt

(b) For A = 12 cm, A > A, and, therefore, the TE; mode is evanescent. The
attenuation constant is |k,|, where

A2 27 122
k. —k,/l—ﬁ 1/ _ﬁ \/ ij2\/§rad/cm.

Therefore, the attenuation rate is

201og;, "' = |k.|20 logg e = x 8.686 ~ 7.88 dB/cm.

T
2v/3




Example 3: A parallel-plate waveguide with a = 3 cm is air filled for z < 0 but it is
filled with a dielectric for z > 0 which has @ = u, and a refractive index n = 1.5.
If a TE; mode wave field with A = 3 cm is incident from the air-filled region on
the interface at z = 0, what fraction of the time-averaged incident power will be

transmitted into the z > 0 region of the guide?

Solution: The cutoff wavelength of TE; mode in the guide is
A = 2a 2x3cm _ 6em.
m 1
For A\ = 3 cm, the intrinsic impedance of the TE; mode fields is therefore

Mo 1200 120w 24077

nre1 = =
1_:\\_2 13 \/7 \/_

in the air filled section.

Within the dielectric region the operation wavelength is Ay = A/n = 3/1.5 = 2 cm,
and, therefore the intrinsic impedance is

no/n 1207?/1.5 80w 2407‘(’

/ | 22

Thus, using a transmission line analogy, the reflection coefficient at the interface is

1
Nre2 —NTE1 3 %_\/3—\/5_ 0.24
1 1 — e

Nre2 + NrEe1 %—f—% \/g—f—\/g

F:

which is the transverse electric field amplitude of the reflected wave in the air
filled region divided by the incident electric field amplitude.




Consequently, the fraction of the incident time-averaged power reflected back from
the interface is the reflectance

IT|*> ~ 0.058,

and
1 — |I|* ~ 0.942

represents the transmittance, the fraction of the incident time-averaged power
transmitted into the dielectric filled region.




30 Exciting and detecting waveguide modes

e Propagating guided-EM waves of any type that can be represented as
some weighted superposition of TE,,and T'M,,, mode fields can be “gen-
erated” in practice within waveguides by using dipole or loop antennas
inserted within the waveguide, say, at z = 0 location, utilized in a
“transmission” mode.

e The same waves can also be “detected” within the waveguide at some
new location z > 0, by employing simple dipole or loop antennas in
“reception” modes.

e The detecting or receiving antenna should be oriented to be “co-polarized”
with the mode field and placed preferentially at some location where
the mode field to be detected has the largest amplitude — e.g., a y-
polarized dipole located at x = a/2 to optimally detect an incident TE,

mode field.

e By the antenna reciprocity theorem applied to antennas within waveg-
uides, we can infer that the optimal position and orientation of an an-
tenna on the z = 0 plane to “excite” some particular waveguide mode
such as TE; mode propagating in the z-direction would be same ex-
act orientation and position of a receiving antenna in the zy-plane to
optimally detect the very same mode field — e.g., a y-polarized dipole
located at x = a/2 on z = 0 plane to optimally excite a propagating
TE; mode field away from the z = 0 plane!

1



Example 1: Will a dipole antenna placed on the z = 0 plane, oriented in the y-
direction at © = a/2 location in order to optimally generate the TE; mode fields,
also be able to generate the TEs and TE3 mode fields in the same waveguide?

Solution: The optimal dipole to excite the TE; mode is also optimal to excite the
TEs3 mode field but it cannot excite the TEs mode field at all. The reason is, E
for the TE3 mode also maximizes at = a/2, just as for the TE; mode, but it
is zero for the TE; mode. More specifically, a dipole oriented in y-direction at
xr = a/2 location cannot excite the TEy mode at alll An optimal location for a
y-polarized dipole to excite the TEs; mode would be z = a/4 (why?) — such a
dipole would also excite the TE; mode, but not optimally (why, again?).

Example 2: Let’s consider exciting TE;, modes in a parallel plate waveguide with a
current sheet antenna with a surface current density phasor J, = S9 on the z = 0
plane. Which TE,, modes will be excited and which ones will not be excited?

Solution: All TE,, modes with odd m =1, 3, 5,... will be excited with finite amplitudes
while no excitation is to be expected for modes with even m = 2,4,6 ... The
reason for this is, for even valued m the mode electric fields oc ¢ sin("™*x) will
be 50-50 aligned and anti-aligned with J, = S7, causing the cancellation of TE,,
modes fields caused by the aligned and anti-aligned portions of J, = Sy. See the

next example if this answer sounds ambiguous.




Example 3: Consider once more placing a surface current density J; = Jy,4 on the
z = 0 plane to excite TE,, modes in a parallel plate waveguide. Let
~ , mm
E,, = §2jE,e 7" sin(—x)
a
denote the electric field phasors of the TE,, modes with F,, amplitudes. Deter-

mine the amplitudes F,, for all m whether the mode is propagating or cut-off.

Solution: We have from Lecture 27
1 2Em 1 ~ . . N
H,, = —— e %3k, sin(k,x) 4+ 2k, cos(k,z)}
Wi

mm

accompanying E,,, where k, = Z%. Accordingly the total H, on z = 0 plane
needing to match half the y-directed surface current density .S is the infinite sum
2j

H,(2=0) = ZE k. sin(k,x).

Wity £

(0.9]

Therefore the unknown mode amplitudes FE,, — effectively Fourier series ampli-
tudes of total £, launched by the surface current J,, — can be deduced from the
boundary condition equation

mmT.., . MT JWhtod 5o
B k2 — (—)2 —) = ——.
mE:]L ( - )2 sin( » x) 1

To extract the E,,’s from this equation multiply both sides with sin(“*) and
integrate in x from 0 to a to obtain

- “ . OJSO “
Z Eny [ k? — (@)2/ dx sin(m) sin(mx) = ‘%/ dxsm(mr) :
— a” Jo a a 1 0 a’

2a

génm — ifnodd, Oelse.
2 nmw




Hence )
Jwhtodso

e T

E, =

for odd m and zero for even m.

Notice that FE,, # for large m, indicating that the excitation ampli-
tudes of lower order modes (small m) will be larger than the amplitudes of
higher order modes.

Also notice that evanescent modes (large m so that k* — (%£)*<0) can
also have non-zero amplitudes E,, but they will be unable to transfer energy
down the waveguide (unless the waveguide is of a finite length and energy
tunneling becomes possible).

e The fact that the w vs k dispersion curve for a plasma is the same as the
w vs k, dispersion curve for a waveguide is interesting and convenient.
We may examine plasmas to infer waveguide phenomena or vice versa,
infer plasma phenomena from waveguide solutions.



e Take the problem of the excitation of evanescent modes within waveg-
uides of finite length and the associated tunneling phenomena. We can
get a grip on this phenomenon by modeling radiation from an infinite
current sheet antenna operating in a finite width plasma slab sand-
wiched between a PEC reflector and vacuum (extending to infinity) —
we examine this situation in the next example.

Example 4: An infinite current sheet antenna with current density J s = Jgso& 1S posi-
tioned on z = S surface a distance S above a PEC reflector and is at a distance
W — S below the plasma to air interface as shown in the margin. We wish to
model the outgoing wave electric field amplitude 7" in terms of the source cur-
rent strength J,, as well as f/f, . We will do so by appropriately matching the
tangential E and H at the boundaries z = S and z = W, as well as requiring
that tangential E vanishes at z = 0.

® In Region 1, 0 < z < S, we have
B Pe—jkz _ Qe—i—jkz

E(z) = &(Pe " + Qet7*) and H,(2) = g :
Ui

2
where £ = k,n and n = 2, with k, = ¢ and n = /1 — w(wwfju) in terms

of the plasma frequency w, and electron collision frequency v. Since El(O) =
(P4 Q) = 0 we need Q = —P and consequently

El(Z) == ,@P(e_jkz — €+jkz) and 1:11(2) = g) (e_jkz + 6+jk2).

= | o

Z .
Air
L’ E = §Te W)

j:Fe—jk(:—S) %_’ — ‘,Z;Beﬁjk(zfs)

v Jo = Jui
.i,Pe—jk:% r»ijeJrjk: Plasma

»
| 2

PEC

A plasma slab containing a cur-
rent sheet radiator — we study
the outgoing wave amplitude T
and internal field distributions of
the plasma as a function of f/f,



® In Region 2, S < z < W, we have

_ _ : - Fe—ik(z=5) _ Betik(z=5)
Eo(2) = #(Fe 7%=5) 4 Betih=9) and Hy(2) = 4 ¢ ¢

Ui
and we require Ey(S) = E{(S) as well as and 2 x (Hy(S) — Hy(S)) = J,o@
leading to
, , F-B P, _. ,
F+B= P(G—JkS _ e—i-ij) and _ _(e—ij + e—i-ij) = —Jy
Ui Ui
to be utilized after we use B = I'jF' obtained by using B.C.’s on 2 = W surface

next.

e In Region 3, 2z > W, we have

. | ) _
E;(2) = iTe 7F ) and Hy(2) = j—e 7o)

o

and we require that E3(TW) = Ey(W) as well as Hy(W) = Hy(W) leading to

—jk(W=5 K(W—S
T = Fe ikW=5) | Betik(W=5) andz _ Feik ) _ Betikl )
770 77

Combining using the last two equations we get
B = o= —jok(W-5)p — T,F
ot
o T 1]
r

and using B = I'yF" in —J, expression we get

_ano

F = -
(1 o Fg) - (1 + Fg)—ifZL—zii




Having expressed F' in terms of Jg,, the remaining wave amplitudes can be computed

using

F+ B
o JkS _ otjkS’

B=T,F, P= and T = Fe7FW=5) 4 petik(W=5)

® The results from Example 4 were used in a Mathematica notebook to produce the

plots shown in the margin.

— The results are singular at w = w, unless a small collision frequency v is

employed in the computation of n. Real plasmas always have some small v
which can be ignored in most applications when |w — w,| > v to work in the

collisionless plasma approximation.

To be consistent with the field definitions we made above, the root of complex
n? with positive real part is used as n unless n is purely imaginary and in that
case negative imaginary n is employed in computing k and 7. This way F' and
Q-wave aplitudes decay away from the z = S source plane when the plasma
is in cutoff, that is w < w,.

The total field in Region 2 is decaying with increasing z > S when w < w,
when F' and B waves are evanescent since B amplitude is constrained as I'jF’
(with |[I'| = 1) when w < w,, that is, Channel 2 is “cut off” but tunnels some
energy out to Region 3!!

z
Air
L, E = iTe /M=)

w

.f;Fe’-’k(Z’S>%_> —p & Be M5
v Jo= St

5 D= ik? ~ ) tikz Plasma
zPe™ %_> — Qe

PEC

»
|

A plasma slab containing a cur-
rent sheet radiator — we study
the outgoing wave amplitude T
and internal field distributions of
the plasma as a function of f/f,

in[93)= Plot[Abs[T] /. v -0, {f, 0, 6}, PlotRange -» AL, AxesLabel - {(f, "|T|"}]
I
600

500

400

out[93]= 599

: - f
1 2 3 4 5 6

Plot of |T'| and as a function of

f in MHz for f, = 1 MHz and
Jso =1 A/m.

In[123):= Show[ {below, above}, AxesLabel » {z, "|E|"}]
IE|

100

out[123]=

0 50 100 150 200

Total field amplitudes within the
plasma slab as a fucction of z
when f = 0.5f,, S = 75 m, and
W = 38S.



31 TM,,,, modes in rectangular waveguides

When the operation frequency f in a parallel-plate waveguide exceeds the
cutoff frequency f. = o~ of the TE; mode, dual- or multi-mode operations
become unavoidable in the guide.

Single-mode operation at high frequencies can be attained by turning off
the guided TEM(=TMj) mode by introducing a pair of new plates on, say,
y = 0 and y = b planes as shown in the margin. This configuration is
known as the “rectangular waveguide”, which is the subject of the next set of
lectures.

e Briefly, the guided TEM mode is suppressed in the rectangular waveg-
uide, and propagation is only possible in terms of TM,,,, and TE,,,
modes. By definition:

1. H. = 0 for TM,,,, mode, for which the mode properties can be

derived from a non-zero E.(x,y,2) = f(x,y)e 7%

2. B, = 0 for TE,,, mode, for which the mode properties can be
derived from a non-zero H.(z,y,2) = f(x,y)e /%

where the constraints on f(x,y) and k, are to be determined from
Maxwell’s equations and the relevant boundary conditions.

e Both TM,,, and TE,,, modes consist of the superposition of free-
propagating TEM wave fields reflecting from the guide walls and satis-

O\



fying the well-known vector wave equations
V’E + wQ,quOE =0 and V’H + wz,uOEOI:I =0

derived from (see margin) Maxwell’s equations. Vector wave equation in pha-
sor form: Taking the curl of
Faraday’s law

TM,,,,, modes: ¥ x B = —jon 1L
e To examine the TM,,,, mode with and using
) = Y O2F
H.=0 and E.(z,y,2)= f(z,y)e "> VxVxE = V(V-E)-VE,
V-E = 0,
consider the z-component of the wave-equation for the electric field, VxH = juek,
namely it follows that
2 2 . .
vV Ez + k Ez = O, V?E + Wi, E = 0.
where Likewise,

2 82 82

+ =+
ox?  0y* 022
Substituting E, into the wave-equation component we have

k= w2,u060 and V2= V2H + w?u,e,H = 0.

0> 0> 0> " 5 "
(8372 i (9y2 + 822)f($’y)6_] . +k f(xﬂy)e—] = Oa
from which
62 62 L " ”
(g2 T g @ w)e ™+ (ke fla, y)e ™ + B f(z,y)e ™ =0
or
02 0> N N
(7 + o 00 + (2 = 1) ) = 0

2



e We will next solve this 2D pdf using the method of separation of
variables. In this method we assume that

flx,y) = X(2)Y (y),

that is, we assume! that 2D function f(x,y) of variables z and y is a
product of 1D functions X (x) and Y (y) of x and y, respectively. With
this assumption, the pdf above takes the form

i Y//

VX" + XY+ (B - )XY =0 = 7+7+(k2—k§) =
where 2y 2y
X" = ) and Y = 8—y2

— Since (k* — k?) is independent z and y, it follows from the above
pdf that X”/X as well as Y”/Y are constants independent of
spatial coordinates. Thus we can write

X" 0?X
=k = kX =0
X v Ox? M
where k, is some constant. Also, by the same argument,
Y” 5 o’y
7:—]€y = a—y2‘|‘]€yY:0,

IThis may appear to be a restricting assumption but if it leads to a complete set of solutions (modes)
— as it does, as we will see — to be able to express all possible solutions as a weighted sum then the
method is fully justified — see footnote 2.

2.29 cm by 1.012 cm
Standard X-band (8.2-
12.4 GHz) waveguide in
which only TE;y mode

1s non-evanescent within

X-band.



where k, is some other constant. Furthermore, utilizing both of
these conditions within

X// Y//
et 4+ (K —-EH)=0
e ()
we get
0*X
2 12 2 12y _ _
-+ -k)=0 = kz_\/k2—k§—k§. KX =0
- We continue by noting that the 2nd order ODEs for X (x) and
Y (y) above are solved by %Y sz _ 0
2 ’

X(z) = Acoskyx+ Bsink,z and Y(y) = Ccosk,y+ Dsink,y.

These general solutions with constants A, B, C, D simplify when
we apply the boundary conditions that X(z)Y(y) = 0at z =0
and y = 0 as follows:

o X(0) =0 implies A =0, and in turn X (x) = Bsin k,x;
o Y(0) =0 implies C' =0, and in turn Y (y) = D sin k,y;

Furthermore,
o X(a)= 0 implies kya =mm, m=1,2,3,---
o Y(b) =0 implies kb =nm, n=1,2,3,---
— Combining the above results, we get
flx,y) = X(2)Y (y) = E,sin(k,x) sin(k,y)
4




and consequently

E.(z,y,2) = E,sin(k,x) sin(kyy)e /",

with
b= ™ g T kz_ﬂ\/l_w_i _R
a b c k? c 12

where

fc — \/(%)2 + (%)2

is the pertinent cutoff frequency of the TM,,,,, mode with m,n > 0.

— Note that neither m = 0 nor n = 0 are permitted with non-zero
E.. Thus TM,,s and TMj,, modes don’t exist?.

2The most general TM solution for the waveguide can be expressed as a weighted infinite sum, which
takes the form, for z = 0,

(z,y,0 Z ZEmnsm )sin(%y),

m=1 n=1

which is a 2D Fourier series representation with Fourier coefficients E,, ,, of an arbitrary periodic f(z,y)
over the zy-plane matching the boundary conditions f(0,y) = f(a,y) = f(z,0) = f(x,b) = 0. This
attests to the completeness of the separation of variables solution method employed in this section since
all periodic functions can be represented in Fourier series form as we learned in ECE 210.

Cutoff wavelength: As usual
we have
A _
Ao fe
and hence
\ - Af 1
CVEPEE? VE ()P



Transverse field components:

Above, we have obtained the dispersion relation for TM,,,, mode in rectangu-
lar waveguides. The dispersion characteristics of these modes are identical to
those we have discussed in connection with parallel-plate waveguides except
for the generalized expression for f..

e Given E,(z,y, z) determined above as well as the fact that H, = 0 (by
assumption), transverse field components of TM,,,, mode waves can be
inferred from Faraday’s and Ampere’s laws as shown next:

— With field components varying with z according to e 7*:*  Fara-
day’s law implies

V X E = % 8%/ _]kz — _jw,U'O(Hxa Hy7 Hz>7
E, E, E.
from which
H, — oy +JkZEy H — 3Ex +szEx H, = 8xy Jy .
—jWiko ! JWwhto — Wit

— Likewise, Ampere’s law implies
Y
0
0

Z
VxH= _,]kz - jUJEO(Ex, Eya EZ))

H.

¥l =
<

(@) @m




from which

oH, | L OHy _ OH,
0y +]]€2Hy E _ang +]szx E _8_;_0_3/
xr . 9 y . 9 y — - . .
JWE, —JWE, JWe,
e Now (as confirmed in HW), TM mode fields:
oL, ; OH . ) %
+ jk.E : + ik.H, Jwe
H, =2 yandEy:ax ,JZ Hx:—QOa‘Z,
—JW i, — JWE, k= — k2
from above imply that go— Y%
Yy )
: . , ' L2 _ 2
H ik — ]we‘)&@_% d E ]kzaa_% — jwito —jk 0B,
r = — an = — 2 Oz
k2 — k2 Y k2 — k2 E, = o505
and, likewise, o _jkzaaEyZ
OFE . OH, | vy 2 2
: 4 ik F, +7k.H k*—k
Hy=2 DI g g = B Z
JW ko Jwe,
imply that TE mode fields:
P L A T Jh=GE + Jwt’g) T
y:— k-2_k2 aln ESL’:_ k2_k‘2 . x k2_k27
z z z
e
e The expressions above provide the transverse field components in terms E, = P20
. L L2 _ )2
of transverse derivatives of longitudinal components E. and H.. . on
_ L 8xz
— By setting H. = 0, they yield the transverse field components for H, = K2 — k2
TM,,,, modes shown in the margin. —jkza;gz
H, = ————-.

7 k? — k2



Also,

— By setting E, = 0, they yield the transverse field components for
TE,,, modes also shown in the margin.



32 TE,,, modes in rectangular waveguides

e The analysis of TE,,,,, modes starts with the wave equation for H., that
is TE mode fields:
V*H, + Kk H, = 0.

_jwﬂoaa_gz
In analogy with the TM,,, case, and using separation of variables, we by = L2 _ 2
z
have o jw Mo%
) Yy T 79 190
H.(z,y,2) = (Acos kyx + Bsink,2)(C cosk,y + Dsin k,y)e 7%, k2 _akg
. OH
gk %52
Pertinent boundary conditions need to be applied in terms of £, and H, = 12 _ kﬁ ,
E, on waveguide walls at x = 0 and a, and y = 0 and b, respectively: ik a}i
_ Oy
: OH : Hy k2 k2
l. B, =0 at x = 0 and a requires 5= = 0 at the same locations, z
implying B =0 and k,a = m.
2. B, =0 at y = 0 and b requires 85?52 = ( at the same locations,

implying D = 0 and k,b = nm.

Hence, |
Hz(x7 Y, Z) — HO COS(kx,CL') COS(kyy)e_jkzz,
with
kx:m’ ky:n_ﬂ-a kz_g\/l—k%—i_kg—g __02’
a b c k2 c f2




where

o= B+ (20

2a
is the pertinent cutoff frequency of the TE,,, mode.

— Note that m = 0 or n = 0 — but not both zero — are permitted
since these choices do not lead to trivial H..

— However, m = n = 0 is not permitted, because in that case H,
becomes independent of  and vy, and leads to zero transverse fields
(see Example 1 for the full reason).
TE mode fields:

0H.,
r 2
Example 1: Determine the transverse field components for the TE,,,, mode explicitly k? 0k
: .. H.
by differentiating g _ JW o=~ P
. y 9
H.(z,y,2) = H,cos(k,x) cos(k,y)e 7% k* — k2
. OH,
and using the relations in the margin. Show that the fields for TEg, are trivial H, = M)
while the fields TE,,( are finite. k2 k2
k 0HZ
- = Oy
Solution: We have, H, = SRR
"o L _ JhoHoky sin(k,x) cos(kyy)e Ik ’
Tk k2 k2 + k2 ’
oo —jk. %L i _  jk.H,k, cos(k,x) sin(kyy)e "=
Yk — k2 k2 + k2 ’




oo jw,uoaé% _ —jwpoH ok, sin(k,x) cos(kyy)e_jkzz
VTR R oy |
—jwhosy  jw,Hok, cos(kx) sin(kyy)e 7t

Ex _ o9y JW o1y yCOS( :vx) Sln( yy)e .

k2 — k2 k2 + K
For TE,,g we have k, = & = 0 and, therefore,

jhk.Hosin(kyx)e 7" —jwptoH, sin(k,x)e k=
- k My =08 = o

Now, we obtain the TEy, field from these by setting k, = 0 using L'Hospital’s law,
leading to

o, B, =0.

Hx = jszoxe_jkzZ and Ey — —jw,uOHoxe_jkzZ

with non-periodic (“secular”) variations o< & — these violate the boundary condition of
zero I, at @ = a unless H, = 0, which is of course the trivial solution.




Detecting and exciting waveguide modes within rectangular waveg-
uides:

e Guided EM waves of any type that can be represented as some weighted
superposition of TE,,, and TM,,, mode fields can be “generated” in
practice within rectangular waveguides by using simple dipole or loop
antennas inserted within the waveguide, say, at z = 0 location, utilized
in a “transmission” mode.

e The same waves can also be “detected” within the waveguide at some
new location z > 0, by employing simple dipole or loop antennas in
“reception” modes.

e The detecting or receiving antenna should be oriented to be “co-polarized”
with the mode field and placed preferentially at some location where
the mode field to be detected has the largest amplitude — e.g., a y-
polarized dipole located at x = a/2 to optimally detect an incident
TE;( mode field.

e By antenna reciprocity the transmitting antenna should also be ori-
ented to be “co-polarized” with the mode field and placed preferentially
at some location where the mode field to be excited has the largest
amplitude — e.g., a y-polarized dipole located at x = a/2 to optimally
excite and launch a TE;y mode field.

e In general orient and position the dipole to be used for “exciting” the
waveguide — usually such dipoles are called “probes” — in a particular

4



TE,,, and TM,,,, mode so that it lies parallel to the strongest E-field
vector on the xy-plane of the mode.

— The application of this rule requires the knowledge of transverse
E-field components E, and E,, which can be inferred from the
transverse field equations derived in Lecture 31.

— Alternatively, use the TE and TM mode transverse-plane field
plots from Lee et al. [1985] — see HW!

e Loop antennas are magnetic dipole antennas!

— A loop centered about the origin, with the current flowing clock-
wise around the z-axis (in the xy-plane) when looking in the z-
direction, is a z-polarized magnetic dipole.

When using loop antennas, orient and position the loop within a
waveguide so that as a magnetic dipole it lies parallel to the strongest
H-field vector of the desired TE,,,, and TM,,, mode on the zy-plane.

— The application of this rule requires the knowledge of transverse
H-field components H, and H,, which can be inferred from the
transverse field equations derived in Lecture 31.

— Alternatively, use the TE and TM mode transverse-plane field
plots from Lee et al. [1985] :-)


http://courses.engr.illinois.edu/ece350/LeeETAL85.pdf
http://courses.engr.illinois.edu/ece350/LeeETAL85.pdf

Waveguide design and application examples:

Example 2: Design a rectangular air-filled wave guide for single-mode transmission
of the frequency band 3.75 GHz — 4.25 GHz in TE;y; mode. That is, select
the dimensions a and b < a of the waveguide so that only the TE;y mode is
propagating in the guide within the specified frequency band while cross sectional
area ab is as large as possible for purposes of the power transmission capacity of

the guide.
Solution: First, to make sure that TE;y mode is propagating in the band for f > 3.75
GHz, we need
= (e (B — = <375 % 10°H
o= O+ (el g = 5 < 370 % 10°HS
n= 0

from which we get
3 x 10 cem/s

>
2 x 3.75 x 107 /s

With a = 4 cm, the cutoft frequency of TEyy mode will be 7.5 GHz, which is safely
outside our band of interest. Of course with a > 4 cm TEy cutoff frequency will
be less than 7.5 GHz, and we can afford reducing it to as small as 4.25 GHz by
selecting

a = 4 cm.

_mcl _3><1010><2_30
T 2o 2x4.25x 109 4.25

a = 7.06 cm.

To ensure single mode operation in 3.75 GHz — 4.25 GHz band we also need for
TEo; mode a cutoff frequency

= J(ES2 4 (e — 5 495%10°H
Je \/(2a) Fflm= o =g > 425X 107
n= 1




yielding
3 x 10%cm/s

b <
2 x4.25 x 107 /s

= 3.53 cm.

Hence, a design with maximum possible ab for the specified band works out to
have a = 7.06 cm and b = a/2 = 3.53 cm.

Example 3: Re-design the waveguide in Example 2 for the frequency band 3.75 GHz —
4.25 GHz to include some safety margins as follows: Select the dimensions of the
wave guide such that the lowest frequency of the band is at least 20% above the
cutoff frequency of the fundamental mode (TEqg), and the highest frequency of
the band is at least 20% lower than the cutoff frequency of the next higher-order
mode. This provision is for preventing the upper sideband frequencies
of a modulated TE10 carrier at 4.25 GHz frequency from launching
undesired TE20 and TEO1 propagation!

Solution: We already have the lowest frequency of the band, 3.75 GHz, more than
20% above the TEj cutoff frequency ¢/2a = 2.125 GHz — therefore at first it
appears that ¢ = 7.06 cm can remain as is.

But b clearly has to change. To select b, let 4.25 GHz be 0.8 times the
cutoff frequency of the TEp mode. Hence

nce 0.8 x 3 x 10%cm/s
425x10° =08~ = b=
8 2B =1 2 % 4.25 x 109 /s

But then we realize that with a = 7.06 cm, 4.25 GHz is still the cutoff frequency
the of the TEyy mode, which is no longer permissible because a safety margin is

= 2.82 cm.




needed — THEyy cutoff frequency also needs to be moved up by the same margin
as TEg;. Thus we also want 4.25 GHz to be 0.8 times the TEyq cutoff frequency,
ie.,

. 110
495 % 10° = 08¢ o 5 08x3x 10 em/s

- — 2% 2.82 = 5.64cm.
24 m=> .25 % 10° /s 8 e

The corresponding TE; cutoft frequency is

mc c c _30><1O9

fe=Salm=1= 5, = 5 = Tx 282

and 3.75 GHz is still more than 20% above this.

= 2.65 GHz

In conclusion, with a = 5.64 cm and b = 2.82 ¢cm we have the required
modified dimensions and safety margins.




Example 4: The waveguide of Example 3 is to be used as an attenuator for the next

(non-propagating) higher-order mode. What is the minimum attenuation rate
for the mode in dB/cm over the band 3.75 GHz — 4.25 GHz?

Solution: The next higher-order modes are TEy and TEy, having equal cutoff fre-
quencies because a = 2b.
The attenuation of these modes will be less severe at f = 4.25 GHz than at 3.75
GHz. We have, for these modes, at f = 4.25 GHz,

kzzk,h—(%)?:mh—(%)2:/{,/1—(2)2: —jk%

Since, at f = 4.25 GHz,

3 x 1010 30 o 2 4.257 q/
= = cim = — = rad/cm
4.25 x 109 4.25 A 15 ’

we have 3 349257  4.257 N

4 15 20 cm’
Consequently, the attenuation rate is

201og,, e*=l = 4.257log,y e = 5.7986 dB/cm.

The attenuation rate will be larger at frequencies smaller than 4.25 GHz within
the band.




Example 5: In the examples above we considered the propagation of signals within the 3.75 GHz —
4.25 GHz frequency band in TE;y mode. In this example we focus on a 4 GHz signal at the
band center and contrast its properties within the rectangular waveguide designed in Example
2 and inside a parallel plate waveguide (a transmission line in effect) of equal dimensions,
a =17.06 cm and b = w = a/2, and later with suitably modified dimensions.

Discussion: The cutoff frequency of TE; and TM; modes in the parallel plate waveguide will be

the same as TE;o mode cutoff frequency in the designed rectangular waveguide, namely 5~ =
3x10'% cm/s

oo = 2-125 GHz and therefore at 4 GHz frequency the parallel plate waveguide will be
operating with all of TMy, TM; and TE; in propagating state, causing symbol ambiguity with
modulated input.
The ambiguity can be eliminated by adjusting a so that 5> > 4 GHz and hence a < % =3.75
cm, which is about half the size for the rectangular waveguide designed for TE;y mode. But
now we have a two-wire transmission line with a wire separation of a = 3.75 ¢cm which is
exactly A/2 at 4 GHz. With equal and opposite currents on two wires \/2 apart, the system
will radiate rather than guide at 4 GHz and is really to be used at frequencies < 4 GHz.

To avoid radiation at 4 GHz you can reduce a of the parallel plate TL to < 3.75 cm, but then the
power transported will be reduced < than the power transported by the TE;q mode waveguide
with a = 7.06 cm. This is because power transported is proportional to ab, the cross-sectional
area of the guide.

To avoid radiation at 4 GHz a better solution is to convert your parallel plate TL with a = 3.75
cm size into a coax with an outer radius of the same scale, i.e., b = 3.75 cm outer radius, to
transport about the same power as the TE;y mode waveguide with a = 7.06 cm. But then the
coax will be more lossy than the waveguide because of the smaller surface area, hence larger
resistance, of the inner conductor of the coax (outer conductor and waveguide wall losses will
be comparable).

If /when the loss-causing inner conductor of the coax is removed to reduce the losses the coax becomes
a cylindrical waveguide! The dominant mode bandwidth of the waveguide can subsequently
be inreased by reshaping the waveguide as a 2:1 rectangle, which is a nice configuration.

Overall, the larger the f the better is the waveguide solution in a microwave circuit given EMI/EMC
as well as power loss concerns.
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33 Guide impedance and TL analogies

/
TE mode fields:
. 0H,
E. = IRy
X ]f2 o kg 9
g, _ d9ny
Yo k2 — k2 ’
-7 OH,
g - ke
X ]f2 o kg )
-7 OH,
o — m
Y k? — k2 '

\

/

The above relations between the transverse components of TE and TM

mode fields imply that

-

TE case:
E, LBy wh
H, —-H, k
- Wit/ k Mo
B 2 ; — ITE
\_ i i

~

4 N
TM mode fields:
. OE,
g Jweoy,
r = ma
—jweoaé%
My = e
—jkz%
Ex - kz _ kga
—jkz%—%
N BT R Y,
a I
TM case:
E. E, k.
H, —H, we,
2
by 11— 12
= ——— =10/l =5 =nrum-
we f
\_ 0 J




The guide impedances defined above can be used to set up transmission
line models for waveguide circuits in which the parameters nrp and nras
for each mode play the same role as the characteristic impedance Z, in TL
theory.

e For example, two waveguides in cascade with different values of nrp can
be quarter-wave matched by inserting a quarter-wave section having a
guide impedance equal to the geometric means of the two guides.

e For dielectric-field guides replace 7, by the appropriate n, and also in
calculating the length of the quarter-wave section use A\, = %—: appro-
priate for that section (see HW).

Note that, using the cutoff wavelength, we have

4 N

TE case: TM case:

nre = o n Mot [ 1 Je
o 2 o 2 TM — 0 - _2 —
N -F Wl % - ./

/ )\2
Mo 1_V




Example 2: Consider an air-filled rectangular waveguide with ¢ = 3 cm and b = 1
cm. Determine the TE;y mode fields for the guide from the results of Example

1 of Lect 29 assuming that at the operation frequency the free-space wavelength
is A =3 cm.

Solution: By setting k, = 0, k, = ™% = 2% and k. = ky/1 — (/\4)2 = 27 in the results
of Example 1 (in Lect 29) we find for TE,,p mode

: k. A B
H(z,y,2) = Ho[ijk—sm(kxx)+zcos(kxx)]e k.2

X

N /1 — ()2
_ Ho[jj)\c 1 (/\c) 2 2Qm T (222

= S sin()\—cx) + 2 Cos()\—cx)]e c
and
E(z,y,2) = —Hogj‘% sin(k,x)e /%=
/1= ()2 9 . .
= —Hyynre x Sin(—ﬂx)e_jk =G0

A

Ac
e 2 ik 1=
= —Hoﬁno% sin(A—Wx)e V1=,

c

With a = 3 cm and b = 1 cm, the cutoff wavelength for TE;y mode is

Thus, with A = 3 cm

RPNV A RN B S S
Ao 12N TN /3
3




Then, for TE;y mode we have
H(z,y, 2) = Ho[fcj\/gsin(gx) + 2008(%x)]6_j”2/‘/§

and

E(z,y,2) = —H,jn,j2 sin(%x)e_jm/\/g.

The real part of these phasors would yield the field vectors inside the waveguide
at time t = 0, as depicted below.

| ‘\»:m% A
‘ 2 W, My

‘mmmw -~
‘ ‘W»»ww Rl

‘ I

— % K e

P

/

e
H

® In the 3D plots shown above we depict E(z,y, z,0) vectors from Example 2 on the
left, and H(x,y, z,0) on the right; the horizontal axis is x, vertical is z, and y axis

is into the page (all labelled in cm units) —note that

— there is no field variation in y-direction because this is the TE;y mode,

— E x H is predominantly in 2z direction.
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Example 3: Repeat Example 2 for the case of TEy9y mode and A = 2 cm.

Solution: For the TE,,; mode we have

~ j)‘c 1_(A)2 2 2 . 5
F(z,y,2) = Hji—Y " i )e I mVImG

= 2y 3 sin(A—Ca:) + 2z COS(A—CQJ
and

2 o JAe 2Tk T (R

E(z.y,2) = —Hojno==sin(5—z)e™ %7

With a = 3 cm and b = 1 cm, the cutoff wavelength for TE9y mode is

2
)\C:—a:?)cm.

Thus, with A =2 cm

A 4 V5 oA A
JioGr=gh—5=F F s 5=

Then, for TE;y mode we have

|«

7 5) 2 2 ,
H(;E, Y, Z) = Ho[i'jg Sm(%x) + z COS(%;E)]@_WTZ\/S/:S

and

[ 3 2 :
E(z,y.2) = —Hognoj; Siﬂ(gx)e_”'z\/g/?’.

The real part of these phasors would yield the field vectors inside the waveguide
at time £ = 0, as depicted below.




e In the 3D plots shown above we depict E(z,y, z,0) vectors from Ex-
ample 3 on the left, and H(x,y, z,0) on the right; the horizontal axis
is x, vertical is z, and y axis is into the page (all labelled in ¢cm units).

e Imagine the vector patterns depicted above sliding upwards in the z-
o
passing by a stationary observer who experiences a monochromatic os-

axis direction at the speed v,, = with each feature of the pattern

cillation.

— that would be the proper way of visualizing the propagation of an
unmodulated TE,, mode.



Example 4: For the TE,,) mode we have the wave fields

- JAcy /1 — (%)2 9 9 | :
H(gj, y, Z) — HO['C% c Sln(-ﬂx) + écos(_ﬂ-x)]e_]k 1_(%0) z
A e A,
and
N Ae . 2 i (X2
E(,Q’]’ y’ Z) —_ — O:&noj_ Sln(—ﬂgj)e ]k 1 ()?\c) Z.
A Ae
Express the time-averaged power transmitted by the mode in Z direction in terms
of
Ae
ZQ)EEfﬂ)O——
N\

representing the amplitude of the electric field wave.

Solution: We start with the time-averaged Poynting vector

(ExH) = %R{Ex igt

= 2 (X) 1— (A—)2sin2(>\—cx)2

Now, integrating (E x H) - Z across the guide cross section we get the time-average

power
a b

P :/ / (Ex H) - zdxdy
=0 Jy=0

E,)? [ 2 E,|? ab
= ol b/ sin2(—7rx)dx: 12 L
2nre  Jo Ae 20715 2




since the integral of

sin2(2)\—7:x) = %(1 — cos(2j7mx)) = %(1 — cos(2mmax/a))

yields 1/2. It can be shown that in the case of TE,,,, modes with non-zero n, the
above result for P is still valid provided ab/2 is replaced by ab/4 (see HW).




Example 5: A rectangular waveguide with ¢ = 2 cm and b = 1 cm is air filled for
z < 0, but is is filled with a dielectric in z > 0 region with a refractive index
n = 15and u, = 1. For f = 12.5 GHz and TE;y mode operation design a \/4
transformer to match the two sections of the waveguide. Use transmission-line
analogy to solve this problem (as in Lecture 24).

Solution: To solve this problem using a transmission-line analogy we first need the
impedances n7g for the two sections of the guide. Since

U

NrE = —F——
Vi=p

we need to find f. and n in the two sections of the guide.
The cutoff frequency is

me 3 x 10" em/s

e = = 7.5GHz in air,
/ 2a 2 X 2cm 2 M air
and 7.5GH 7.5GH
fe= me/n = — z_L - 5 GHz in dielectric.

2a n 1.5

Hence 190
nrp = ——— = T 1507 Qin air,
_ 2 1— (L2)2
72 12.5
and
n B 1207 /1.5 B 4007

)in dielectric.

e = —— = 1_(1)2_ o
72 125

Since Nrg air 7 NrE.diel, We Will certainly have reflections at the interface at z = 0
unless a matching section is inserted.




Consider a A/4 long section of a waveguide with identical dimensions as above but
filled with some dielectric having a refractive index n,. Then, transmission-line
analogy would indicate that an impedance match can be achieved if

2
NTE,airITE,diel = NTE z

where nrg,is the impedance of the matching segment. In view of the above
relations, this can be written as

1207 /n,

2 )
7.5/ny
\/1 o ( 12.5 )

4007

(1507)( N

) =

which yields

2 2
. 120%y/21
2 (75> 120V n? = 1.459.

"+ 7 \125) T 150 x 400

To determine the actual length of the A/4 long section we need to find out A, which
is really the guide wavelength A, for the TE;y mode, i.e.,

ke R == =
1—%  125x 109\/1 — (7i52/.75%> 12-5%\/1 _ (7.152/.?)
30
= = 2.28 cm.

v/ (12.5n,)% — 7.52
Thus, the matching section has a physical length of

A
d= Zg = 0.572 cm.
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34 TE modes in dielectric slab waveguides

e As frequency f increases well beyond the microwave range, the cutoff
wavelength \. = 2—1“ = % of the TEq( of mode will dip towards um scales.
Guiding structures with pm scales can be more naturally implemented
as dielectric slabs as opposed to hollow waveguides. Optical integrated

circuits contain many such channels of dielectric slab waveguides.

— In this lecture we will examine briefly the guidance conditions 1,
and dispersion characteristics encountered in dielectric slab waveg-

N3

uides. ]
ny > Ny
e Consider a slab of dielectric material of refractive index n; = /e, |
of a width d embedded in a dielectric with a smaller refractive index ny

ny = 4/€y.. Propagating modes of frequency f can be trapped and

- n2

guided in the slab with the refractive index ny > no,

Guidance requires gi > 9( = sin

— so long as the mode can be represented as a superposition of un-
guided TEM waves reflected from plane boundaries of regions with

index nq and ny with an incidence angle 6; larger that 6., where
6, = sin~! e
ni
is the critical angle for total internal reflection (TIR).

— Recall that when TIR occurs, the reflected wave has the same
amplitude as the incident wave, while an evanescent transmitted

1



wave is found in the second region. If 6; < 6. no guidance can occur
since the transmitted fields in that case would be propagating
rather than evanescent.

Guided modes not only require

| n2 ¢b = ¢r_k1xd7
0; > sin . 6, = ¢p+ T,
1
¢m = ¢g_k1xd7
but also ¢r = G+ LT
kidcos@; = ZT'+ mm, m=20,1,2,--- where
where ' denotes the reflection coefficient at the interfaces between kiz = ki cos 0;.

the regions of n; and mp. This guidance condition ensures the self- 1,
consistency of free TEM components of the guided modes reflected

U

from the planar interfaces separated by distance d.

For the TE mode case where the incident and reflected fields taken as mee

~ N9

E, = gEoe—jkl(— cos B z+sin 0;z) and Er — @)EOFTEG_jkl<Coseﬂ+8in9iz)

Guidance requires ¢, > ¢ = sin~! n2

the reflection coefficient is given as ™

kydcosb; = /T+mm, m=0,1,2, -
. Mo cosB; — nycosBy  mqcosb; — noycos by 1 o8 i, m
TE = =

1o cos 0; + 11 cos B ~ nycos; + ny cos by

since




® Above, Guidance conditions:
2

.12
0; > sin"! —=

. ny .
cosfy = \/1 —sin?6y = 4 /1 — —é sin? 6, ny
U
and
since according to Snell’s law
& S kidcost; = ZT'+mn, m=0,1,2,---
. . . ki . Wy/Io€1 . n .
kisinf; = kosinf, and sinfy = —sinfy = ———sinf; = — sin 6.
ko W/ o2 9
Another way to obtain the
Clearly, for guidance conditions:
2
ny . . 1 o )
1 < —ésm2 0, < 6,>60,=sin = Since
Ei _ gEoe—jkl(— cos 0;z+sinb;z)
we have
2 and
2 n% 7 Er — QEOFTEQ_] 1(cos 0;z+sin iz)7
. ; and E, gets reflected at z = d
and (using the root that causes the decay of the fields oc eFikzcosfar ((r)lnce i giin) e B
above and below the slab) then necessary that
. - —jk1 cosb;d — oJkicosbid ,—j2mm
T 71 COS 692 -+ J \/n% SlIl2 9@ — n% (I'ree Wre =e e
TE = : : for int This is possible iff
nycost; — J \/ n?sin”0; — n3 |§2§ B TR B oS
Wlth 9 > .1 no
-9 2 2 i Sin -,
. S1n 91 — N5/ N ni
AFTEZQJEELH 1\/ 2/ 1.
cos b; and
Now, substituting ZI'rg in the guidance condition shown in the margin, . jeosg, = /Dpptmr, m=0.1.2.---
we obtain
kid T L A/sin? 0, — n2/n?
—cos@l-—m—:tanl\/ 3/ L m=0,1,2,3,---
2 2 cos 6,



which is only valid for 6; satisfying

Since

ki =

0; > sin

w
U1

1 N2 _

p— C-

ni

1 C

—, Where v, = —— = —

v Ho€l N ny’

the guidance condition can also be cast as

d
cosB; — m_

’Ul/f 2

which is known as the characteristic equation for TE modes.

e The above equations constrain the number of propagating modes at a
given frequency f and the associated angle 6; for each TE mode m.

— Each propagating mode for a given d is associated with a cutoff
frequency f., and propagation is possible only if f > f. for the

given mode.

— At f = f. we have 6, = 6. for the given mode, in which case

d
Ul/fc

1

— tan

v

" 2g 2/ 2
., /sin?6; n2/n1’ m=0.123. .

m 1 sin 0, — n2/n?
cos@c——:—tan_l\/m - 2/ L—0,

2 78

cos b;

cos .,

from which we obtain the cutoff frequencies

fc:

muy

2d cosf,’

4

m=0,1,2,3--

L L S S P
0.0 0.2 0.4 0.6 0.8

Graphical solution of the char-
acteristic equation for TE modes
m = 0,1,2,3 in propagation and
mode m = 4 in evanescence. The
blue curve depicts

) 27,2
1. «/sin?6; —n3/n?
—tan
T cos b;

as a function of cos#; for ny, = 1
and n; = 1.5 while the straight
lines depict

m
cosf; —

d
Ul/f 2
with ﬁ = 2.5 and m increasing
from left to right in steps of one.

P
1.0



Since

v1:£ and cos@czm:

ni

it follows that
fC: ) m:O717273”°

for TE modes.

Example 1: Consider a dielectric slab waveguide with d = 3 mm, n; = 1.5, and
ny = 1. (a) Determine the cutoff frequency for the TE; mode in the guide. (b)
Determine the frequency f of a TEy mode signal in the waveguide if §; = 60°.
(c) Determine the phase velocity of the mode described in part (b).

Solution: (a) The cutoff frequency for TE; mode is

3x10%em/s 5% 10%

mc
= = = Hz ~ 44.72 GHz.
2dy/n? —n3 2x0.3cmy1.52—-1 v 1.25

Je

(b) Evaluating the characteristic equation

d m 1
cosf, — — = —t
v/ f 2w

with m = 0, ny/n; = 2/3, sin; = /3/2, and cos §; = 1/2, we find

fa_ 1 /3=
v2 T 1/2

7 2 /.2
B sin“ 6; — ns5/n
an Y 2/ Ll m=0,123,--
cos 6;

—0.266 = f=0.266x 2 x %.




Since
c  3x10"%cm/s
’Ul = — =

=2 x 10"
" 3/ x 10" cm/s,

we find

2 x 10%cm /s

— 3.54 x 10'"°Hz = 35.4 GHz.
0.3cm

f=0~266><2><%:0.266><2><

(c) The phase velocity of the mode is given by

w w U1 2 x 10"%cm/s 10
=7 = , = = = =231 x10 :
‘r k., kisin®; sin6; V3/2 8 cm/s




35 TM modes in dielectric waveguides

e Last lecture we examined the characteristic equation and the cutoff
frequencies of TE mode of propagation in dielectric slab waveguides.

Guided TE,, mode fields consisting of the superposition of transverse
polarized electric fields

E, = Z)Eoe_jkl(_ cos O;z+sin 0;2) and Er _ QEOFTEe_jk1<COSGix+Sin Giz)7

where

ny cosf; + j\/nsin® 0; — n’

FTE — )
nycosf; — ]\/n% sin? 6, — n%

have

1. propagation angles

n
P2 (critical angle)
ni

0, > 0. =sin"

2. satisfying a characteristic equation

d 1 in”6; — n3/n?
cos@i—@:—tan_l \/Sm n2/n1’ m=20,1,2,3,---
v/ f 2 7 cos 0;
3. for frequencies f exceeding the cutoft frequency
fom——r— m=0,1,2,3---

2d+/n? — n§7

1

d

U

ny > No




e For a given f = %W, the characteristic equation can be solved (typically
by using graphical techniques) for 6;, from which we can calculate the
propagation constant

k., = kysinb;
where
woow
ki=—=—m
U1 C

is the wavenumber in the core region of the guide at the operation
frequency w = 2x f. It follows that the

2
guide wavelength A\, = k—ﬁ

z

and !
w w V1

/f_z - k1 sin 6, " sin 0;

can be obtained once 6; is calculated from the characteristic equation.

phase velocity v, =

e Given the k, in the core region, k, and k, outside the core region (with
index ny) can be obtained by using the fact that k, is identical in both
regions (why?).

e In this lecture we will continue our study of dielectric slab waveguides
by examining the TM modes.

'Note that group velocity v, = v;sin6; (in analogy with parallel plate waveguides) if and only if
w > w, = 27 f. because of the effect of the cladding region that contains a substatial fraction on the wave

energy unless w > w. — in fact for TE; mode v, ~ v, at frequencies much less than the cutoff frequency
of TE; mode.



TM modes

e For the TM mode where the incident and reflected fields are taken as

~

H, = @Hoe—jkl(— cos B z+sin 0;z) and I:IT — @)HORG_jkl(COS f;x+sin 6;2)

the reflection coefficient is given as

mcosB; —nycosbty  nocosl; —nqcosbs

R = = .
M cosB; +mycosfy  nocosb; + nqcos by

This leads to

2
. n .
No cos 0, —I—]nl\/n—§ sin; — 1

2

R —

2
. n .
Ny cos f; — jnl\/n—§ sin6; — 1

2

with

2 37,2
L \/sin®0; — n3/n3
LR = 2tan 5 :

n
—2 cos 6;
"

Hence, in this case the guidance condition leads to the characteristic

equation
d m 1 sin?@; — n2/n?
cos@i—g——tan_l\/ n2l 2/ L m=0,1,2,3,---
vi/f T n—%cos 0;

Note that this result for the TM mode leads to the same f,. expression
as in TE modes.

Graphical solution of the charac-
teristic equations for TE and TM
modes m = 0,1,2,3 in propaga-
tion and mode m = 4 in evanes-
cence. The blue and red curves

depict

1 o] V/sin? 0; — n2/n?

T cos b;

and

1 o A/sin? 6, — n2/n?
2 tan LV Ui 5/ni

n.
n —3 €08 0;
1

as a function of cos@; for ny = 1
and n; = 1.5, while the straight
lines depict

d g _ ™
cost; — —
Ul/f 2
with —4— = 2.5 and m increasing

vi/f
from left to right in steps of one.



Mode structures:

Examples of profiles for the transverse electric field of TE modes.

TM modes have similar profiles for the magnetic field.

f just above
cnt-off

T attanuation

4 attenuation

1 attenuation

> > [

T attenuation

{ attenuation

1 attenuation

4 attenuation

J attenuation

S just above

g > 15> [




Acceptance cone and numerical aperture:

Guidance requires

. 1 N2 . €r2
0, >0, =sin ' = =gin ',/
ny €rl

and therefore “acceptance angles” from air (see the diagram below)

0y < Opm = sin~ ' y/n? —n3 =sin"' /e,

where

SN Oy, = /1% — n3 = /6,1 — €9 is called numerical aperture.

The maximum acceptance

angle 0,,, defines the so-called

“acceptance cone” that in-

cludes all the external sig-
nals incident on the dielec-
tric waveguide that can cou-
ple to the waveguide at
the air/core interface on a

constant-z plane.



Er2 &g

0;=0,

The critical angle at the core/cladding
interface is reached when the angle in air is
the maximum angle permitting guidance.

8, > 07V ExliEp

0; <0,

When the angle in air exceeds the maximum
value necessary for guidance, transmission
(leakage) into the cladding takes place.

€r2 &y

At the air-core interface

ErpirEn - 1 .
—T8T0 ging, =, |—sindg,

£r1é, én
O; +0,=90° = cosfy=sinf; <

sin aat =

At the critical angle

. . £
sinf; =sind, = (-1

€r1

B sin’ Bom

. . .
sin’ Optm =1— cos’ Optm =1— sin2 6,=1- 8": £r1
r r

= sinf,, = Ja,l — &, = numerical aperture

gam = n_l Vérl — €2



36 Rectangular cavities

e Consider a rectangular waveguide propagating some TE,,,, mode having
a longitudinal magnetic field component

H o cos(k,x) cos(kyy)e 7

where

mi nm
ko= k= o and k=R — k2 — K.

In principle, the same guide can also propagate a TE,,,, mode field with

H_ o< cos(k,x) cos(k,y)etF=

in reverse direction, and if both waves were present in the guide, we
would have a total field

H.; = cos(k,x) Cos(kyy)(Fe_jkzz 4+ Re+jkzz>

where F' and R denote the amplitudes of the forward and reverse waves
depending on sources and/or boundaries in z.

— Of course E.; = 0 for TE,,,,, modes, while

— transverse field components can be obtained using the equations
shown in the margin (derived in Lecture 29) where the sign of
Tk, is taken in accordance with the order implied in e™*+* for
forward and reverse propagating waves.

TE mode fields:

Tk, 2L
k? _ k? )
Tk %
k.2 _ k.2 )
jwﬂoagfcz
K22
_jwﬂoaaHyz
k2 — 2




e For a rectangular cavity formed by introducing conducting walls
at z = 0 and z = d within a rectangular waveguide, the pertinent
boundary conditions to be imposed on H,; become

H.(x,y,0) =0 and H,(z,y,d) =0

since H cannot be perpendicular to a conducting plate. Accordingly,

1. Hy(z,y,0) = 0 requires R = —F, in which case we can write /

(taking F'=1 for simplicity)

H. = cos(k,x)cos(kyy)(e /"% — etIh7)

= —j2cos(kyx) cos(kyy) sin(k.z).

2. H,(x,y,d) =0, in turn, requires

kd=Ir, 1=1,2,3- v

excluding [ = 0 for non-zero H,;.

e H.(x,y,z) now describes a standing wave pattern within the rectan-
gular cavity, having a periodicity in z where

[Hei(2,y, 2)| oc [ sin(k.2)]

repeats over z by integer multiples of A./2, where

2 z
Azzk—j and /{:Z:g, [=1,2.3-

2




e These standing waves are termed TE,,,;; modes and oscillate with char-
acteristic frequencies

f=o= \/ T 4 (T2 4 (o2 = 2\/ TR (4 (52 = F

that follow from

mm nm Im
1’2—7 :—7 k‘Z:—
g a Ry b d
implying
2
2 W 9 2 2 _ (MM Mo l_”z
/<:—C2—k7x+k7y+kz (a)+(b)+(d).

Characteristic frequencies f,,,; are also known as resonance frequencies
of the cavity, since they represent a discrete set of frequencies for which
source-free field variations are possible within the cavity, in analogy with

1. having source-free voltage variations in an ideal LC circuit at its reso-

nance frequency w = Nizel and also in analogy with

2. TL resonators studied in ECE 329 (short or open circuited TL seg-
ments).



e Transverse field components of TE,,,; resonances can be obtained by

superposing the transverse derivatives of

Hzi = + cos(k,x) COS(]{yy)e:ijzZ
as specified in the margin. We that find
jk.k, sin(k,x) cos(k,y)eTik=

+
HS = T
It jk.k, cos(k,x) sin(k,y)eT/=

y E—E

+ :Fjwﬂokx Sln(k$$) COS(kyy)eszkzz
EF = el

+ +jwitoky, cos(k,x) Sin(k;yy)eﬂpjkzz
EX = )

which in turn lead to

H,; = HI+ H. = —j2cos(k,x)cos(kyy) sin(k.z)

th

 J2k.k, sin(k,x) cos(kyy) cos(k.2)

_l_ —
HY +H, = s
N _ J2k.ky, cos(kyx) sin(k,y) cos(k.2)
H +H, = R
N _ —2wpeky sin(k,x) cos(kyy) sin(k,2)
ES+E, = e
_ 2wpoky cos(kyx) sin(kyy) sin(k. z)

TE mode fields:

Tk,
k.2 _ k.2 )
Tk %
K2 — k2
jwﬂoagfcz
K22
_jwﬂoaaﬂyz
k2

z




components

e Standing waves formed with superposed TM,,,, mode fields having z- /
d

E;’t — Sln(kl’x) Sin(kyy>e:|:jkz2

will likewise produce T'M,,,,,; mode resonances in rectangular cavities of
dimensions a > b and d having identical resonant frequencies as TE,,,;

modes. e |
X .7
e For TM,,,; modes with H,; = 0, a longitudinal standing wave field “/}
. . v N
E. = Ef+ E. = sin(k,2)sin(k,y)(e 7" 4 e™/k=2) —

leads to transverse field components satistying the boundary conditions
at z =0 and z = d provided that
[T
k, = R [=0,1,2,3---
— [ = 0 1s allowed in this case since k£, = 0 does not lead to “incom-
patible” boundary conditions (normal E, and tangential H, , are
allowed on conducting walls at z = 0 and d)

— on the other hand, it is required that m and n are both non-zero,
a property inherited from propagating TM,,, modes.




TM mode fields:

e TM,,, transverse field components accompanying

jweOaEz
EF = sin(k, ) sin(k,y)e™/*= Hf = 3 Zyé :
can be found from the relations given in the margin. They lead to HE jweo%E;
T e e
x k2_k§ E:t _ :F]kzgy
HE —jwe ok, cos(kyx) sin(k,y)eFik=> Y k2 — k2
y L2 _ )2 ik oL,
z . Ei— _ TS Ox
ot Fik.k,sin(k,x) cos(k,y)eF/ v k2 k2
y =2 V4
B Fik.k, cos(k,x) sin(k,y)eTik=> 2
‘ k? — k2
from which ‘
E. = E + E; =2sin(k,x)sin(k,y) cos(k.z2) Wy
H, — H +H- _ J2weoky sin(k,x) cos(kyy) cos(k.2) 5
k? — k2
- _ —j2weok, cos(k,x) sin(kyy) cos(k.z)
H, = H/+H,/ = SR
_ —2k.k,sin(k,x) cos(kyy) sin(k,z)
_ + _ zvy x Y z
Ey = Ef +E, = e
_ —2k.k, cos(k,x) sin(k,y) sin(k,z)
o + o zhx x Yy z
By = EY+ E- = — |



— Notice that £, = 0 and E,; = 0 at both z = 0 and z = d provided
that k,d = lm, as claimed earlier on.

— Furthermore [ = 0 does not lead to a trivial field since in that case
E., Hy, and Hy; are non vanishing]

e Summarizing the results from above, in a rectangular cavity of dimen-
sions @ > b and d and conducting walls, resonant field oscillations at
distinct set of frequencies

fmnl — g\/(m>2 + (%)2 + (é)Q

a

are possible, so long as at least two of the indices m, n, and [ are non
Zero.

— For TE,,,,; resonances m = 0 or n = 0 are permitted,
— For TM,,,,,; resonances only [ = 0 is permitted,

— A resonance of frequency f,,,; is is said to be non-degenerate if it
is allowed for a single mode and it is degenerate otherwise.



e Practical uses of cavities:

1. Cavities with small apertures on their walls will interact strongly
with external signals (suck them in) having oscillation frequencies
matching one of the resonant frequencies, and, conversely, weakly
at off-resonant external frequencies. This leads to the usage of
cavities as “frequency meters”.

2. Dielectric filled cavities will have resonant frequencies

v
fmnl =

N

d /L€
Measuring the resonant frequencies of a dielectric-filled cavity is a
very accurate means of determining /€.

3. Cavities filled with active media or devices are a common way of
configuring practical signal sources — e.g., lasers.

4. Microwave ovens are essentially resonant cavities excited by (cou-
pled to) a source operating near some of the resonant frequencies
of the cavity that establishes a reasonably smooth field structure
where the food is to be placed.

e Our analysis of cavities and waveguides have been based on the as-
sumption of perfectly conducting walls, so far. Waveguide and cavity
walls will in practice be very good but imperfect conductors. The im-
plications of this are:

Movable piston
the resonance frequencles

INPUT

N e




1. Propagating waveguide modes will be weakly attenuated as the

field energy is lost into the walls to drive ohmic currents within a
few skin-depths of the metallic surface.
In our idealization of the walls as “perfect conductors”, we refer to
the depth integral of these volumetric current densities as “surface
current densities”. In general, an equivalent surface current J, on
a wall will deliver an average power of

1= 1 [mfu, ~ o W
Soss:_RsJ 2= —1J 2 —
: 2 19 2V o 9 m?2

to be dissipated per unit area of the wall (see margin and the ECE
329 notes).

. Cavity mode oscillations at frequencies f,,,; will be damped as a
function of time if not “replenished”. The rate of energy loss Pj,ss
can be calculated by integrating

W

m?2

1 7Tf nl | 5
Sloss — § = ‘Js|2
o

over the 6 cavity walls where at each wall we use |J|* = |Hyangential|”

Decay time-constant of the stored mode-energy W, the volume in-
tegral of t€,|E[* + 1p,|H|? within the cavity, is then given by the
ratio

Recall from ECE 329, Lec-
ture 26:

Power loss per unit area of a
conductor with an equivalent
surface current J, is

1 -
Sloss - §R5|Js|2

where

[ W
Rs = 2_5 = Re{ncond}

is the surface resistor of the
conductor in terms of con-
ductivity o, permeability u,
and frequency w.



3. Given the energy dissipation rate 7, and the resonant frequency
Wmni, the product

Q = WmnlTmnl

is known as quality factor. Highly damped modes have small @,
while a high-Q) is an indicator of a low-loss cavity.

Review the concept of @ from your ECE 210 notes (see Chpt 12).

4. In cavities with lossy walls in thermal equilibrium (i.e., at a
steady temperature) it is observed that the average stored energy
does not change with time despite the losses in the walls. What
that means is that the lossy walls must be radiating as much as
they absorb on the average.

The phenomenon of cavity radiation from lossy walls in thermal
equilibrium — related to blackbody radiation as well as thermal
resistor noise — will explored in the next lecture.

Example 1: Determine f,,,; and Q) = T,,wWmw for an air-filled rectangular cavity witha =b=d = 2
cm in TE 9 mode.

Solution: For TE,,y modes k, = 0 and the field expressions derived earlier simplify as

H, = —j2cos(kyx)cos(kyy)sin(k,z) — —j2cos(kyz)sin(k,2)
0. - J2k.k, sin(k,x) cos(kyy) cos(k,z) R j2k, sin(k,x) cos(k.z)
"o k2 — k2 kq
j2k,k, cos(k,x) sin(k,y) cos(k,z)
Hyt = ¥ ]{j2 — k‘g Y — 0

10



E —2wpok, sin(kyx) cos(kyy) sin(k,2) . —2wp, sin(k,x) sin(k,z)

v k2 — k2 ks
2wiok, cos(kyx) sin(k,y) sin(k,2)
E:Ct - Y k‘2 — k‘z Y — 0

Therefore, we have

1 E]?  ew?u?sin?(k,x)sin?(k,2)
<§€OE . E> = €, 1 = k%
and . . 2
1 H k2 sin®(k, k.
<§M0H -H) = Mo% = po[cos® (kyx) sin®(k,z) + = sin’( Z cos™( Z)]

Volume integrals of these in a cavity with a = b = ¢ replace each trigonometric product in
above expressions with a®/4 and thus we obtain

a® eqwi 2 a® k2
W=— = o[l + 2] = ——%2
[ iz + fol +k§]] 2 Rz

4

after using k? = w?u.€,. Also with a = b = ¢ we have k2 = k? = k?/2 for TE;op; mode, and
hence
W = a®u,.

For surface currents on cavity walls we have, on top and bottom walls (x = 0 and z = a),
T2 = |H.|* + |H,|* = 4sin®(k,2) + 0
on left and right walls (y =0 and y = b = a),

4k2 sin? (k) cos?(k.2)

\J,? = |H.|* + |H,|* = 4 cos?(kyx) sin?(k,z) + 12

and on front and back walls (z =0 and z =d = a),

4k? sin® (k)
k2

Integrating these three expressions over their surfaces, multiplying by 2 (two walls per each

expression), and finally scaling by R,/2, we obtain power loss in the walls as

|jS|2: |}~Ix|2+|gy|2: +0.

2 2
Pioss = Raa®[2+ 1+ ﬁ + k;] = R,d*[2+ 141+ 2] = 6R,a’

11




Finally

W api, aflo afho a |20, a
= = = = = — _— = = — 2 o
"7 P 6R® 6R, 6,/Z= 6V w TV

where w is the resonance frequency for TE q; mode satisfying

2 w? 2 2 2 9
k :C_2:kx+ky+k222(g) = w—f——w101

Substituting for w above, we find that

= %\/2wa,uo :% 2/2 —U,uo— \/2\/_c7raauo

which yields for a cavity with copper walls (6 = 6 x 107 S/m)

Q=wr = 26\/5\/3><108><7T><2><10—2><6><107><47r><10_7
— FW \/?1% x 10% =~ 10.56 x 10° ~ 10%.
Also, the resonant frequency of the mode is
Jio1 = et L \/5% - = 3 x 107 = 50 GHz ~ 10 GHz.

o o V2a V22 x1072 22

e The result Q = 7w ~ 10* from Example 1 indicates that the mode oscillates through
10*/2m > 10% cycles over a time period in which the mode energy decays by one
e-fold.

12



37 Resonant modes and field fluctuations

e Since in a rectangular cavity the resonant frequencies

Jmnt = g\/(@)2 + (%)2 + (é)2 2wt _ \/(@)2 1 (%)2 n (2)2’

a C

m n I
a’b’d
ing away from the origin of a “3D Cartesian space” where each lattice

point, e.g., (2,2 Ly = (L 21

(TE and TM) of the cavity.

we can consider 2 f,,,;/c to be the “length” of a “vector” ( ) point-

), is associated with two resonant modes

1

——, and thus volume

— In this space, “volume” per lattice point is

12
abd®

— Also, all the resonant modes with resonance frequencies f,,,; less

per resonant mode is

than a given frequency f can be associated with lattice points
residing within one eight (an octant) of a sphere of “radius” 2f/c
centered about the origin of the same space — only an octant is
involved since the indices m, n, [ employed are all non-negative.

Thus, the number of resonant modes with frequencies less than f, to
be denoted as the cumulative distribution C(f), is found to be

o(f) = & X (sphere of radius 2f/c) _ 5 X 4{(%)3 _ 87Tf3V
1/2 1/2 3¢?
abd abd




where V' = abd is the physical volume of the cavity. Consequently, the
number density N(f) of the available resonant modes in a cavity of
volume V is obtained as

dC  8mf? modes
N(f) — df — 03 V HZ

which grows quadratically with frequency f. As illustrated later in this
lecture, the distribution N(f) has deep theoretical implications.

Example 1: Consider a rectangular cavity with dimensions a = b = d = 0.3 m.
Determine N(f) for f = 50 GHz and the number of resonant modes to be found
within a bandwidth of Af =1 GHz centered about f = 50 GHz.

Solution: Using the density function derived above, we find that

87(50 x 10)?
(3 x 105)3

modes
Hz

N (50 x 10%) = (3x1071)? =8rx25x 107" =27 x 107°

Thus, the number of resonant modes in a bandwidth of Af = 1 GHz centered
about f =50 GHz is

modes

Number of modes within band = (2rx107° )x10° Hz = 200007 = 60000.

Z




Energy spectrum of radiation in enclosed cavities:

e Consider an air-filled rectangular cavity with slightly lossy walls sitting
on a table top in some lab where the room temperature is 300 K.
Assume that the cavity has been in the room for a long time and has
reached thermal equilibrium with the rest of the room — i.e., the walls
of the cavity also have T" = 300 K.

[t turns out that such a cavity will be filled with electromagnetic fields
consisting of (i.e., a superposition of) the TE,,,; and TM,,,; modes
distributed across the frequency space with a density function

7.‘,2
Ny =

C3V

derived above.

— The resonant modes with the distribution function just quoted are
the result of radiation by random currents flowing on the cavity
walls caused by random thermal agitations of the charge carriers
located within the walls.

— As soon as it is (randomly) established, a resonant mode will start
decaying because of ohmic losses in cavity walls (see earlier dis-
cussions), returning back the radiated energy of the wall back to
the wall.

— In thermal equilibrium the temperature of the wall as well as the
expected total energy of cavity radiation summed over all of its
modes will remain constant.

3



e The energy density spectrum of the radiation within the cavity, E(f),
measured in units of J/m?/Hz, should be product of N(f)/V with
(W (f)) representing the expected value (statistical average) of the en-
ergy W(f) of each mode at resonant frequency f. Hence,

B 87 f2
==

E(f) (W)

e What might be the expected mode energy (W (f))?

e Fach resonant mode such as TEqp; or TMy19 can be interpreted as two
degrees of freedom (one degree for E and one for H) of the electromag-
netic field variations in a closed cavity, just as velocity components v,,
vy, v, of any one of N molecules contained within a volume of gas are
each considered a “degree of freedom” for the N molecule system.

— In physical models each degree of freedom in a gas in thermal

equilibrium is assigned! an expected energy of
1 1
(=mwv?) = =KT
2 2

where K = 1.38 x 10723 J /K is Boltzmann’s constant and T is the
equilibrium temperature in K.

Tn thermal equilibrium all particles have by definition equal average energies. Denoting this energy as
%K T is just a matter of defining the equilibrium temperature of the gas in terms the average kinetic
energy of its individual molecules — at a fundamental level that is what temperature is! Including the
Boltzmann constant K in this assignment is just a matter of setting the scale used for temperature (Kelvin
scale by convention). At room temperature (298 K), KT works out to be 0.0256 ¢V.

4



e If we naively make a similar assignment (see margin note) to (W (f)),
e.g., take
(W(f)) = KT

(on account of the fact that TE,,,; and TM,,,; modes have energies
which are the sum of two quadratic terms proportional to \EP and
/H|?), we then immediately run into a difficulty in that E(f) blows
up to infinity in the high frequency end because (W (f)) has no high-
frequency cutoft.

The difficulty just mentioned — known as “ultraviolet catastrophe” —
was well recognized at the beginning of the 20th century, and was re-
solved by Max Planck’s recognition that electromagnetic mode energies
W ( funi) have to be quantized in chunks of size h f,,,;, and

<W(fmnl>> = KT

is acceptable only if an “energy quantum” A f,,; < KT

It hfnm > KT for a given mode, then the mode is very seldom excited
(to an energy level of one h f,,,,;), and thus the expected value of energy
W ( fmn) in the mode is an exponentially reduced fraction of an energy
quantum h f,,,; given by

<W(fmnl)> = hfmnl e_hfmnl/KT.

This effective “cutoff” in (W(f)) function eliminates the ultraviolet
catastrophe.

%KT per quadratic term:
Assigning an expected energy of
%K T per quadratic term in a to-
tal energy expression of a large
system of elements in thermal
equilibrium is a standard pro-
cedure used in classical statisti-
cal mechanics. This is a conse-
quence of well known experimen-
tal results such as: in a gas con-
sisting of a mixture of light and
heavy atoms, (1mV;?) of the light
atoms match (3 Mv2) of the heavy
atoms in thermal equilibrium —
all quadratic energy terms get the
same 3 KT (classically)!



: . ) Shape independence:
— Using the 1st and 2nd laws of thermodynamics together with E(f) obtained for the rectangu-

the quantization rule that he introduced, Planck derived? the & cavity is actually independent
) of cavity shape. This can be jus-

relation tified by considering two cavities,
hfmnl one rectangular, one not, joined
<W(fmnl>> - 7 KT by a small aperture. If the two
e fmnl/ — 1 .
cavities have the same temper-
for the expected mode energies having the limiting cases for ature T', then by definition (of

T) there cannot be any net en-

ergy exchange between the cavi-

hfnml < KT and hfnml > KT ties at any f (a detailed balance

per frequency is required because

the aperture may have an f de-

pendent transmittivity) — hence

a common F(f) for the two cavi-

ties with a common 7" even if the
equilibrium takes the form shapes are different!

E(f) is also independent of the

9 3 lossiness of the walls (even though

87Tf hf J / m @ of the cavity depends on it)

E(f) — T<W(f)> — 3 hf/KT 1 H . and therefore applicable to all

¢ € o Z lossy cavities at thermal equilib-

rium including those whose walls

are perfect absorbers, i.e., black-

just discussed.

— With this result, the energy spectrum within a cavity in thermal

This derived spectral shape was successfully adjusted to fit the
observed energy spectra of cavity radiation by varying the param- bodies.

eter h, which is now known as Planck’s constant® and has the fixed
value of 6.626 x 107! Js.

2See Oliver, B. M., “Thermal and Quantum Noise”, Proc IEEE, 53, 436 (1965) for a simplified version
of Planck’s derivation.

3Planck’s constant h is one of the three fundamental constants of physics, along with ¢ and G, the
gravitational constant, from which absolute units for all physical variables can be derived in suitable

combinations: e.g., length unit=+/hG/c?, time unit=+/hG/c?, etc.
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38 Cavity radiation and thermal noise

Cavity radiance: Energy den-

e In a 1D cavity of some length L — e.g. a TL with shorts at both ends sity

as discussed in ECE 329 notes — the resonant frequencies are N(f)
c c c E(f) = =W
fm: — m, Wherem:172>37"' 87 f2 hf J/m3

Am  2L/m 2L -
which indicates that the mode density in f is

3 eh/KT _ 1 Hyg °

in a 3D cavity in thermal equi-

21, d librium resides by equal amounts
N ( f ) = IModaes in the traveling wave components
C Hz of the cavity modes arriving with

Therefore the energy density in a 1D cavity in thermal equilibrium speed ¢ from the boundaries of
the cavity subtending 47 sterads.

(assume vanishingly lossy wires with temperature T') will be Multiplying E(f) by ¢/47 we ob-

pip) = gy 2 e

in analogy with the energy density of 3D cavities. This energy density

Lif) — 22 hf W /m?/ster
V= "aamr 1~ 1w

which is called radiance and rep-
will reside by equal amounts in the traveling wave components of the resents the power density per unit
solid angle of the waves traveling

1D resonant modes arriving with speed ¢ from the opposite ends of the iyin the cavity,

1D resonator. Power spectral content P(f) of each of these traveling .
Radiance L(f) also represents the

wave components can thus be calculated as ¢/2 times! F (f), ie., spectrum of power radiated per
h f W unit solid angle by a unit area of
P ( f) — . a blackbody surface at temper-
ehf /KT __ 1 Hz ature T" (since non-reflective walls
of a cavity will produce the same
Note that per TEM plane wave, E(f) as partial-reflecting walls as
- - - mentioned earlier).
Loz 1 zo |E Hf _ [E
(el + o) = - g = G

which confirms that the time-averaged stored energy density times c is indeed the time-averaged power
transported per unit area.



e Now replace the shorts at the ends of the resonator with resistors R at
temperature T' matching the characteristic impedance Z, of the line.

Since there cannot be any net power exchange between elements in ther-
mal equilibrium (over any frequency band — otherwise a net broadband
exchange can be arranged for by using filters with suitable frequency
responses in violation of the 2nd law of thermodynamics), it follows
that matched resistors R will be both absorbing (a full absorption be-
cause of impedance matching) and injecting (to a matched load again
because of the same fact) the same power density P(f) identified above.

The upshot is, we need to conclude that any resistor R at a temperature
T must have an available power density of

B hf W
~ ehf/KT _ 1 Hy

P(f)

fueled by thermal agitation of its internal charge carriers. The resistor
is then capable of outputting an average power of

hf _ {(v?)
ehf/KT _ 177 = 4R

P(fAf =

over a bandwidth Af, where (v?) is the mean squared open-circuit
voltage at the resistor terminals over the same bandwidth.

Unmatched termination case:
If R # Z, then a portion
P(f)|T)? of the incident power
P(f) will be reflected from R
(rather than being fully ab-
sorbed). In that case R emits
only a reduced level of power
P(f)(1 — |T'|?). This is a simple
example of how P(f) can be emit-
ted in its entirety only by perfect
absorbers defined to be black-
bodies. In 1D, the blackbody ra-

diance at temperature 7' is

hf \WY%
P(f) = chf/ET — 1 Hy,
while in 3D it is
LOf) — 212 hf W/mz/ster
(f)_?ehf/KT—l Hz '
Visible
Speotrum
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e [t follows that

W?)  hfAf . (v*)
IR~ T —q redueing to S = KTAJ for hf < KT

a result known as Nyquist noise theorem. The theorem can also be

cast as

(%) _ hfAf . (i)

10 = KT 1 reducing to yTehn KTAf for hf < KT
in terms of mean squared short-circuit current (i?) of the same resistor
over the same bandwidth and conductance G = 1/R. Note that if the
element has an impedance Z = R+ jX = 1/Y only the real part of Z
should be utilized in connection with power transferred to a matched
load Z*.

e Nyquist noise theorem outlined above has a very powerful generaliza-
tion known as the fluctuation-dissipation theorem:

— according to this theorem, any linear and dissipative system in
thermodynamic equilibrium will exhibit thermally driven fluctua-
tions of its dynamic parameters (e.g., electron density in plasma
at finite temperature), and

— the frequency spectrum of the fluctuations can be obtained by ap-
plying the Nyquist noise theorem to an appropriately constructed
equivalent circuit model of the system.



e The unavoidable fact of fluctuations and noise encountered in dissipa-
tive systems and circuits constitutes both a challenge and an oppor-
tunity for the engineer. Consider taking ECE 453 to develop a better
understanding of noise issues in communication circuits.

Example: Consider the RC circuit shown in the margin. Assuming that the capacitor
holds 10 V prior the switch is closed at t = 0, the capacitor voltage for £ > 0 can

be expressed as
ve(t) = 10e/EC

using ECE 210 knowledge. This solution implies the dissipation of the initial
stored energy within the resistor. But as we have seen in this lecture, dissipative
elements such as resistors also produce random thermal voltages and currents.
We therefore expect a non-zero v.(t) in the circuit shown in the margin as t —
oo, assuming that the resistor has some non-zero steady-state temperature T
measured in Kelvins. Given that the resistor produces an open circuit voltage
v(t) with a mean-squared value of

(v*) = 4RKTAf (Nyquist noise formula)

over any bandwidth A f, let us calculate the mean-squared capacitor voltage (v?)
in the circuit over all frequencies f.

Calculation: The Thevenin equivalent circuit modeling the noisy resistor in the phasor
domain is shown in the margin. The model includes a source voltage phasor V.

A capacitor C' with impedance Z, = % connected across the terminals of the
equivalent model circuit will develop a phasor voltage

~ - 7 ~ 1

V.=V—_=V

R+ Z. 1+ jwRC

(a) Initial value problem:

t=0

R = vc(t)

(b) Frequency domain Thevenin
model of a noisy resistor:




as dictated by voltage division. The mean-squared value of a co-sinusoidal oscil-
lation v.(t) = Re{V.e’*'} with the phasor V. would then be

1
11+ jwRC|?

1 ‘Nf 2 1 ‘~r 2 1 ‘Nf 2 H 2
—_ c p—— _—_

where %|\N/|2 is the mean-squared value of open circuit voltage v(t) of the resistor

and
1 1

T L+ j27fRCZ 1+ (2rfRC)?
is a frequency dependent scaling factor — the magnitude square of the frequency
response function of the circuit — between the two mean-square quantities.

[H ()

Now, the mean-squared voltage output
(v*) = 4RKTAf (Nyquist noise formula)

of the noisy resistor over a small but finite bandwidth A f can be scaled likewise
to obtain

ARKTAf
2 2 2
pu— H pr—
02 = CH = 1 G fre
the mean-squared voltage output across the capacitor over the same bandwidth
provided that |H(f)|? is fairly constant over the band. For wider bands where
the constancy condition is violated, use

2 4ARKT
2\ __
<“C>_/fl T+ 2r RO

whereas the broadband value over all frequencies (with f; — 0 and fo — 00) is

ARKT KT
2 —
(we) /0 1+(27TfRC’)2df C’

a value independent of R.




For a 1 pF capacitor K = 1.38 x 1072 J/K and T = 300 K gives an rms (root mean

squared) voltage of
KT
(WHY? = —— ~ 0.65mV,

easily detected in the lab.




39 Antenna noise

Thermodynamic derivation of A(f, ¢) = gG(@, O):

e Consider a z-polarized half-wave dipole antenna with a transmission
impedance of Z,,; = 732 embedded within a large cavity in thermal

equilibrium at some thermodynamic temperature 1T'. A 73 () resistor,
also at the same equilibrium temperature 7" as the rest of the cavity, is
connected between the terminals of the dipole as shown in the margin.

— As we will learn in Lecture 38, a hot resistor will deliver an average
power of K'T'df over a bandwidth of df to any matched load, which
in this case is the dipole antenna.

e The dipole will radiate its average power input P, = KT'df with a gain
G(6, ) to maintain a radiated power density (Ponting flux) of

KTdfG(Q,gb) W

Amrr? m?2

at a distance r within the cavity, amounting to a radiated power of

KT dfds)

= G(0,9) W

over an infinitesimal area of dS = r2d() spanning an infinitesimal solid
angle increment df). The corresponding outgoing radiated power den-



sity of the dipole
KT W

EG(Q’ 2 ster/Hz

is carried by é—polarized fields as we know from our studies of dipole
radiation.

The same dipole with its matched termination is also exposed to in-
coming cavity radiation with a radiance of

OKT W/m”

L0, 1) = A2 ster/Hz’

coming from direction 6, ¢ as we will learn in Lecture 38, of which half
the amount

KT W/m’
A2 ster/Hz

SL(6.6, 1) =

is contained in é—polarized (i.e., co-polarized) incoming waves incident
on the dipole.

— Let the product

KT W

1
EL(ea ¢7 f)A(@, ¢) — VA(ea ¢) Stel“/HZ

of the effective area A(6, ) of the dipole with the co-polarized
radiance %L(Q, ¢, f) incident on the dipole represent the average
power per steread per Hz delivered by the dipole to its impedance

2



matched 73 (2 load, balancing the outgoing power loss of the resis-
tor so that it remains at a constant temperature as demanded by
the 2nd Law of Thermodynamics for a system in thermal equilib-
rium.

o In that case

VA(Q’ ?) ster - EG(Q’ ?) ster

leading to

e While this result for the antenna effective area was obtained by consid-
ering a half-wave dipole antenna, the same conclusion could have been
reached using any type of antenna with a conjugate matched complex
load impedance Z; = Z; , connected between its terminals, providing,
in thermal equilibrium, both the source of the radiated power of the
antenna into the cavity and the sink of the received power extracted
from cavity radiation.

— Assuch, we conclude that A = ﬁG relation holds true for all types
of antennas and can be used in P. = 5;,.A equation to calculate
the power delivered by any antenna into its conjugate matched
load in terms of the co-polarized incident flux S;,..

— Furthermore, from the universality of A = gG we directly infer
the independence of P,/P; ratio from the choice of transmission

3




and reception roles assigned to a pair of coupled antennas (see
Lecture 20) and thus infer the reciprocal two-port network model

2
leading to P, = g éZf'ZT} formula (see Lecture 20 again), to provide
us, in turn, with a means to calculate |V,| = |Vr|, the magnitude

of the open circuit voltage of a receiving antenna.

o Also the phase of the antenna open circuit voltage V, can be
deduced to match the phase of —dl - E in the gap region of
the receiving antenna for any incoming field E.

o Even the most general

v, = —/dl-E(r)]ﬁr)

formula for an antenna open circuit voltage can be “reverse

2
engineered” to match the P, = ¢ R|‘e/?‘ZT} = SincA(0, @) require-

ment (as we have done in Lecture 20) with Vp = V.

e All these lead to a simplified description of antenna reciprocity and
reception much used by RF engineers — mainly the methods we learned
in Lecture 20 — without going through the details of the Reciprocity
Theorem based derivations covered in Lecture 21.



e We have seen that the antenna effective area A(0,¢) can be used to
covert The relation

— the power density S;,. of only the co-polarized component of the A(6, ¢) )‘_2 G (6, 6)
incident field into ! 4

— the power delivered P, into a resistive termination conjugate match- applies to all anten-
ing the antenna input impedance Z,.;. nas universally.

e Consider an arbitrary antenna located at the origin with

— some termination R,

— a gain function G<97 Qb)

which is exposed to a spectrum of incident plane TEM waves with co-
polarized field components E; at a frequency f = 5= arriving from
directions (6;, ¢;) with power densities S;.

e Each co-polarized field E; could deliver an average power of up to

to R one-at-a-time — where A(f, ¢) is the appropriate effective area of
the antenna for reception — and, furthermore, the expected value of

!The component of the incident field that is not co-polarized - called cross-polarized - is not detected
at all by the receiving antenna.



P, extracted from the full spectrum of E; would be

(Pr) = Z SiA(0;, ¢i)

when phasors E; have random phase offsets distributed independently
between 0 and 27 radians (see the margin for an explanation).

— This sum generalizes to an integral Incoherent power addition:

Consider a voltage

<PT> — //d5(67¢7 f)A(Q, Qb) v(t) = Vi cos(wt) + V5 cos(wt + ¢)

applied across a 1) resistor where
¢ is a random phase shift param-

in case of a continuum of random incident waves over a band of eter. Squaring v(t) and taking its

time-average it can be shown that

frequencies f, which in turn takes a specific form the time average-power

)= [ [ 516.0.5140,0)d04r A

1 1
= 51/12 + §V22 + V1Va cos(¢).

with | T Notice the third term in P. With
random ¢ we would be unable to
dS’(Q7 qb) f) — EL(97 qb) f)def = Vdﬂdf know P, but still its expected value

is

1 1
. . . . . . 1. P) = _V2 + _‘/27
in case of co-polarized radiance of cavity radiation at an equilib- Fl=ghi+gh

which is the incoherent sum of the

riuam temperature T. time-average power due to signals

1 and 2 one-at-a-time.

e In a practical application an antenna will be used to detect a specific
plane-wave signal of interest, of, say, power density S5, in the presence
of a random continuum dS(6,, f) corresponding an some effective



temperature 7). In that case, we obtain over a finite frequency band?
A f containing S, an average received power of

(P) = S.A(8:,6,) + /A f [ dsto.6.0)46.0)

— SSA(957 ¢s) + KTaAfa

since

/A . / ds(0, ¢, [)A(0,¢) = /A f / %L(H,qb, FIA0, )dQdf

_ Af / fifaA(e,qb)dQ:KTaAf.

e The second term of (P,) above is called noise power, or simply “noise”,
while the first term represents the signal power, or simply the “signal”.

e Since we want the “signal-to-noise ratio” SNR as large as possible, we
should select Af as small as allowed, but regrettably Af = 0 is not
an option in practical communication applications because of the finite
bandwidth of the signal of interest (with Af = 0 we would lose the
signal together with the noise!).

The effective temperature T}, introduced above deserves some further expla-
nation:

2A suitable Af is imposed by using an appropriate band-pass filter in cascade with the matched antenna
termination.

We will routinely use the ap-
proximation

22 hf
L(f) = 76hf/KT—1
_2KT
22

in this lecture since we are
concerned with radio fre-
quencies [ within narrow
bands Af over which

hf < KT.

Recall that radiance L(f)
is measured in units of

W /m?/Hz /ster.



e Since in normal usage an antenna will not be placed in a cavity in = ' ' ,
thermal equilibrium, our usage of

2K'T,
\2

above is just a convention that helps us to parametrize the noise power

L6, ¢, f) = L(f) =

Galactic
pole

collected by a receiving antenna in terms of an equivalent temperature
T, referred to as “antenna temperature”.

temperature (290°K)

Antenna temperature T, may or may not be the physical (thermodynamic)

10

temperature of a noise source in the sky:

1 Il 1 1
10 Me 100 Me 1Ge 10 Ge 100 Ge
 Frequeney

e When the antenna beam is fully intercepted (at some large distance)
by a perfect absorber (a blackbody) of an equilibrium temperature T,
then then the antenna temperature will be

Antenna temperature curve
from Kraus, “Radio Astron-
omy” (1966): Note that T,
is dominated by atmospheric
noise (lightning, man-made
noise) at low frequencies and
by thermal emission from ab-
sorbing gases in the atmo-
sphere past about a GHz.

Ta — Tb

and measure the thermodynamic temperature of the absorbing body. In
radio astronomy this fact is used to measure the surface temperatures of
planets such as Venus (using a geometrical correction factor to account
for the fact that the planet will not fully intercept the antenna beam).

The universe can be regarded as a cavity sparsely filled with objects
(galaxies, stars, planets, living things) not in thermal equilibrium with
the cavity walls.

So-called cosmic noise from
radio galaxies (including our
own) dominates in VHF and
UHF band.



The “walls” of the cavity — at about 13.7 billion light-years away — are
known to have an equilibrium temperature of about 3 K (discovered in
1964 and taken to be the strongest evidence for Big Bang) that produces
a blackbody radiance curve

2f°  hf
Ly(f) = 2 ohf/KT, _ 1

that peaks within the microwave frequency band.

However, galaxies and intergalactic gases radiate by a variety of non-
thermal processes (e.g., synchrotron radiation) so that the overall radi-
ance spectrum L(6, ¢, f) (the sum of all contributions) is non-thermal,
giving rise to a frequency dependent T,(0, ¢, f) curve shown in the
margin.

The noise power collected by an antenna can be conveniently calculated by
multiplying this “equivalent” antenna temperature T,(60, ¢, f) with KAf.



Visible

spectrum
= ¢ InfraredAUItraviolet
=108 T
2 1
S 103}
Ko
s,
= 1
@
i3
Q) ‘

3 | -
1012 1013 1014 {015 {016
Frequency (Hz)

|
105 104 1000 100 10
YWavelength (nm)

Example 1: A typical GSM cell tower will radiate 10 W of average power at a carrier
frequency of 750 MHz. Assuming a 1 km direct path between the cell tower and
a GSM hand held receiver we computed the received power of

)\2G1G2 0.4x1.5
P=P——=10(——
! 0 47103

222928 x 107 W = 22.8nW
(4mr)? ) % t

10




in Example 3 in Lecture 38 assuming that both the tower and the receiver make
use of small antennas of directivities D = 3/2.

To calculate SNR, signal-to-noise ratio for the hand-held unit, we look up
the antenna temperature 7, for f = 750 MHz from the chart on page 4 — we

see that T, ~ 100 K. With a GSM channel bandwidth of Af = 200 kHz, and
Boltzmann constant K = 1.38 x 107%J /K, we deduce a noise power of

KT,Af =1.38 x 1072 x 100 x 2 x 10° = 2.76 x 107 10W.
If we were to use T}, = 300 K instead of T,, = 100 K, we would have
KT,Af =138 x 1072 x 300 x 2 x 10° ~ 107 W = 10~%nW.

Clearly, the SNR of the hand held unit > 1 and the system should work success-
fully.
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