ECE 333 – Green Electric Energy

9. Energy Economics Concepts

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

ENERGY ECONOMICS CONCEPTS

- □ The economic evaluation of a renewable energy resource requires a meaningful quantification of the cost elements
 - O fixed costs
 - O variable costs
- We use engineering economics notions for this purpose since they provide the means to compare on a consistent basis
 - O two different projects; or,
 - O the costs with and without a given project

TIME VALUE OF MONEY

- □ Basic underlying notion: a dollar today is not the same as a dollar in a year
- We represent the time value of money by the standard approach of discounted cash flows
- □ The notation is

P = principal

i = *interest value*

■ We use the convention that every payment occurs at the end of a period

SIMPLE EXAMPLE

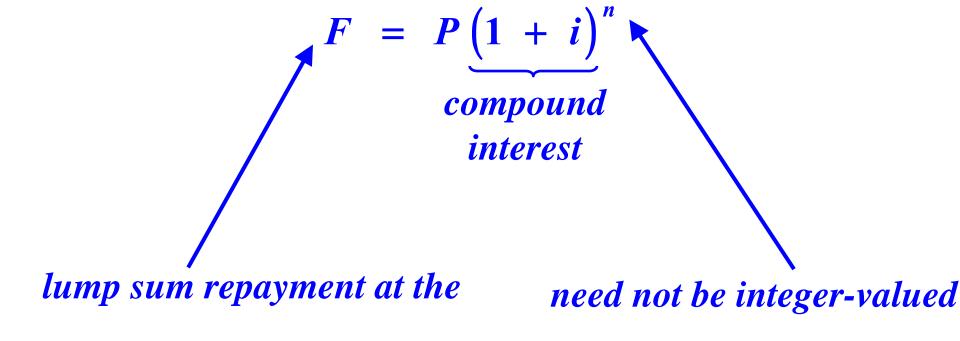
```
loan P for 1 year
repay P+iP=P(1+i) at the end of 1 year
year 0
year 1
                  P(1+i)
loan P for n years
year 0
                          P
                              repay/reborrow
year 1
                   (1+i) P
                              repay/reborrow
year 2
                   (1+i)^2 P
                              repay/reborrow
year 3
                   (1+i)^3 P
                   (1+i)^n P
year n
```

COMPOUND INTEREST

end of period	amount owed	interest for next period	amount owed at the beginning of the next period
0	P	P i	P + P i = P (1+i)
1	P(1+i)	P(1+i)i	$P(1+i)+P(1+i)i=P(1+i)^{2}$
2	$P(1+i)^2$	$P(1+i)^2 i$	$P(1+i)^{2} + P(1+i)^{2}i = P(1+i)^{3}$
3	$P(1+i)^3$	$P(1+i)^3i$	$P(1+i)^3 + P(1+i)^3 i = P(1+i)^4$
•	•		
n-1	$P(1+i)^{n-1}$	$P(1+i)^{n-1}i$	$P(1+i)^{n-1} + P(1+i)^{n-1}i = P(1+i)^n$
n	$P(1+i)^n$		

the value in the last column at the e.o.p. (k-1) provides the amount in the first column for the $period\ k$

TERMINOLOGY



ECE 333 © 2002 – 2014 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

end of n periods

TERMINOLOGY

- ☐ We call $(1+i)^n$ the single payment compound amount factor
- ☐ We define

$$\beta \triangleq \left(1+i\right)^{-1}$$

□ Then,

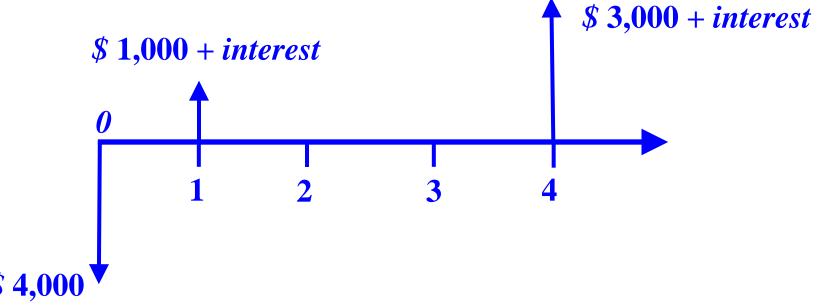
$$\beta^n = (1+i)^{-n}$$

is the single payment present worth factor

☐ F denotes the future worth; P denotes the present

worth or present value at interest i of a future sum F

- □ Consider a loan of \$4,000 at 8 % interest to be repaid in two installments
 - \bigcirc \$ 1,000 and interest at the e.o.y. 1
 - \bigcirc \$ 3,000 and interest at the *e.o.y.* 4



■ The cash flows are

$$\bigcirc$$
 e.o.y. 1: 1,000 + 4,000 (.08) = \$1,320.00

$$\bigcirc e.o.y. 4: 3,000 (1 + .08)^3 = \$3,779.14$$

□ Note that the loan is made in year 0 present

dollars, but the repayments are in year 1 and year

4 future dollars

□ Given

$$P = \$1,000$$
 and $i = .12$

then

$$P(1+i)^5 = \$1,000(1+.12)^5 = \$1,762.34 = F$$

 \square We say that with the cost of money of 12 %, P and

F are equivalent in the sense that \$ 1,000 today has

the same worth as \$ 1,762.34 in 5 years

□ Consider an investment that returns

\$ 1,000 at the e.o.y. 1

\$ 2,000 at the e.o.y. 2

$$i = 10\%$$

rate at which money can be freely lent or borrowed

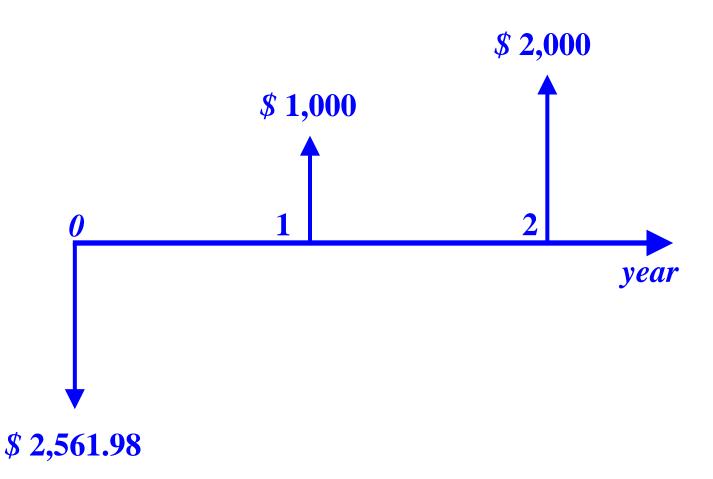
We evaluate P

$$P = \$1,000(1+.1)^{-1} + \$2,000(1+.1)^{-2}$$

$$\beta^{2}$$

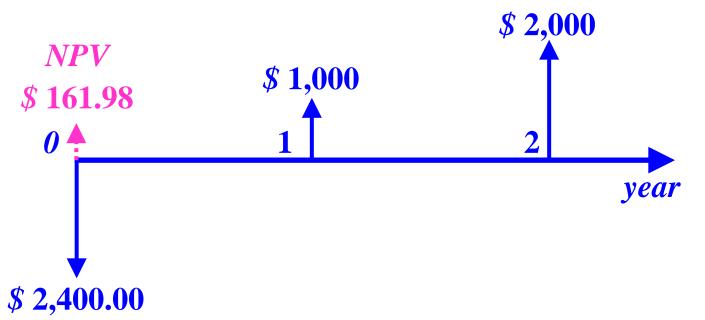
$$= \$909.9 + \$1,652.09$$

 \Box We review this example with a cash – flow diagram



Next, suppose that this investment requires \$ 2,400 now and so at 10 % we say that the investment has a net present value or

$$NPV = \$ 2,561.98 - \$ 2,400 = \$ 161.98$$



CASH FLOWS

 \square A cash-flow is a transfer of an amount A_t from

one entity to another at the e.o.p. t

- \Box We consider the cash flow set $\left\{A_{\theta}, A_{1}, A_{2}, \dots, A_{n}\right\}$
- ☐ This set corresponds to the set of the transfers in

the periods $\{0,1,2,\ldots,n\}$

CASH FLOWS

 \square We associate the transfer A_t at the *e.o.p.* t,

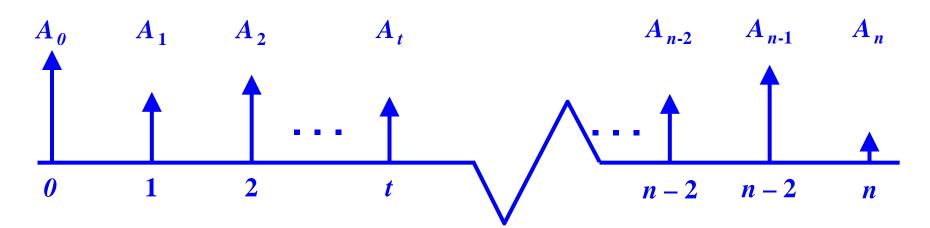
$$t = 0, 1, 2, ..., n$$

- ☐ The convention for cash flows is
 - + inflow
 - outflow
- ☐ Each cash flow requires the specification of:
 - O amount;
 - O time; and,
 - O sign

CASH FLOWS: FUTURE WORTH

☐ Given a cash – flow set $\{A_0, A_1, A_2, \dots, A_n\}$ we define the future worth F_n of the cash flow set at the e.o.y. n as

$$F_n = \sum_{t=0}^n A_t (1+i)^{n-t}$$



CASH FLOWS: FUTURE WORTH

□ Note that each cash flow A_t in the (n + 1) period set contributes differently to F_n :

$$A_{0} \rightarrow A_{0} (1+i)^{n}$$
 $A_{1} \rightarrow A_{1} (1+i)^{n-1}$
 $A_{2} \rightarrow A_{2} (1+i)^{n-2}$
 $\vdots \qquad \vdots \qquad \vdots$
 $A_{t} \rightarrow A_{t} (1+i)^{n-t}$
 $\vdots \qquad \vdots \qquad \vdots$
 $A_{n} \rightarrow A_{n}$

CASH FLOWS: PRESENT WORTH

 \square We define the present worth P of the cash – flow

set as

$$P = \sum_{t=0}^{n} A_t \beta^t = \sum_{t=0}^{n} A_t (1+i)^{-t}$$

■ Note that

$$P = \sum_{t=0}^{n} A_t \left(1+i\right)^{-t}$$

$$=\sum_{t=0}^{n}A_{t}\left(1+i\right)^{-t}\underbrace{\left(1+i\right)^{n}\left(1+i\right)^{-n}}_{1}$$

CASH FLOWS

$$= \underbrace{\left(1+i\right)^{-n}}_{\beta^{n}} \underbrace{\sum_{t=0}^{n} A_{t} \left(1+i\right)^{n-t}}_{F_{n}}$$

$$= \beta^n F_n$$

or, equivalently,

$$F_n = (1+i)^n P$$

 \Box Consider the cash – flow set $\{A_1, A_2, \dots, A_n\}$ with

$$A_{t} = A$$
 $t = 1, 2, ..., n$

□ Such a set is called an equal payment cash flow set

 \Box We compute the present worth at t = 0

$$P = \sum_{t=1}^{n} A_{t} \beta^{t} = A \sum_{t=1}^{n} \beta^{t} = A \beta \left[1 + \beta + \beta^{2} + ... + \beta^{n-1} \right]$$

 \square Now, for $\theta < \beta < 1$, we have the identity

$$\sum_{j=0}^{\infty} \beta^{j} = \frac{1}{1 - \beta}$$

It follows that

$$1 + \beta + ... + \beta^{n-1} = \sum_{i=0}^{\infty} \beta^{j} - \beta^{n} \left[1 + \beta + \beta^{2} + ... + \beta^{n-1} + ... \right]$$

$$= \left(1 - \beta^n\right) \sum_{j=0}^{\infty} \beta^{j}$$

$$=\frac{1-\beta^n}{1-\beta}$$

□ Therefore

$$P = A\beta \frac{1-\beta^n}{1-\beta}$$

But

$$\beta = (1+d)^{-1}$$

and so

$$1-\beta = 1 - \frac{1}{1+d} = \frac{d}{1+d} = \beta d$$

We write

$$P = A \frac{1 - \beta^n}{d}$$

and we call $\frac{1-\beta^n}{d}$ the equal payment series

present worth factor

EQUIVALENCE

■ We consider two cash – flow sets

$${A_t^a: t = 0,1,2,...,n}$$
 and ${A_t^b: t = 0,1,2,...,n}$

under a given discount rate d

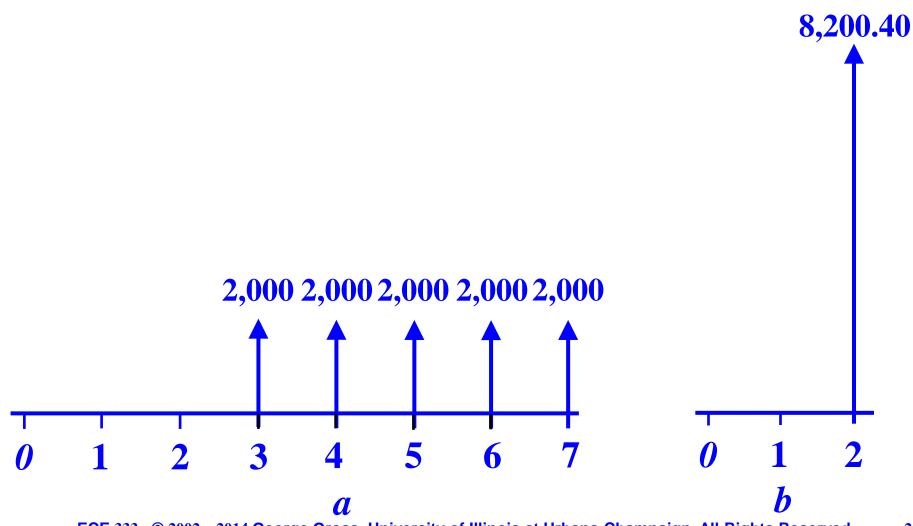
 \square We say $\left\{A_t^a\right\}$ and $\left\{A_t^b\right\}$ are equivalent cash-flow

sets if and only if

$$F_m$$
 of $\{A_t^a\} = F_m$ of $\{A_t^b\}$ for each value of m

EQUIVALENCE EXAMPLE

 \Box Consider the two cash – flow sets under d = 7%



EQUIVALENCE

■ We compute

$$P^{a} = 2,000 \sum_{t=3}^{7} \beta^{t} = 7,162.33$$

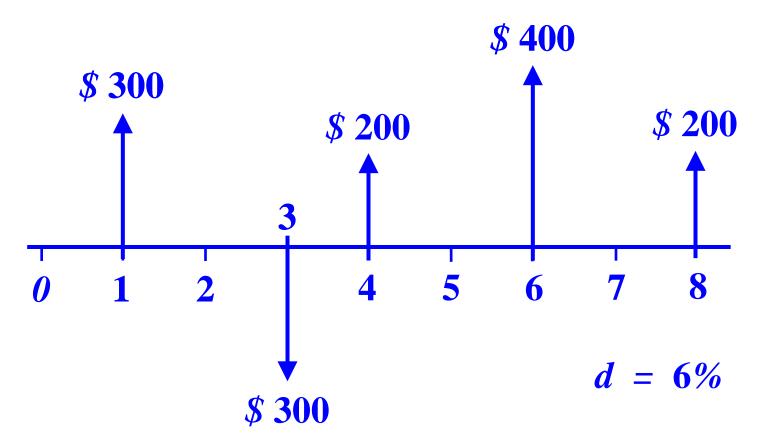
and

$$P^{b} = 8,200.40 \quad \beta^{2} = 7,162.33$$

lacksquare Therefore, $\left\{A^a_t\right\}$ and $\left\{A^b_t\right\}$ are equivalent cash

flow sets under d = 7%

□ Consider the cash – flow set illustrated below



 \square We compute F_8 at t=8 for d=6 %

$$F_8 = 300(1+.06)^7 - 300(1+.06)^5 +$$

$$200 (1 + .06)^{4} + 400 (1 + .06)^{2} + 200$$

 \square We also compute P

$$P = 300 (1 + .06)^{-1} - 300 (1 + .06)^{-3} +$$

$$200 (1 + .06)^{-4} + 400 (1 + .06)^{-6} + 200 (1 + .06)^{-8}$$

■ We check that for d = 6%

$$F_8 = 597.04 (1 + .06)^8 = \$951.56$$

DISCOUNT RATE

- \Box The interest rate i is, typically, referred to as the discount rate and is denoted by d
- lacktriangle In converting the future amount F to the present worth P we can view the *discount rate* as the interest rate that may be earned from the best investment alternative
- ☐ A postulated savings of \$10,000 in a project in 5 years is worth at present

$$P = F_5 \beta^5 = 10,000 (1+d)^{-5}$$

DISCOUNT RATE

 \Box For d = 0.1

$$P = $6,201,$$

while for d = 0.2

$$P = $4,019$$

☐ In general, for a specified future worth, the lower

the discount factor, the higher the present worth is

DISCOUNT RATE

■ We may state this notion slightly differently; the

lower the discount factor, the more valuable a

future payoff becomes

☐ The present worth of a set of costs under a given

discount rate is called the life - cycle costs, an

important term in economic assessment studies

 \Box We consider the purchase of two – a and b –

100-hp motors to be used over a 20 – year

period; the discount rate is given to be 10 %

 \Box The relative merits of a and b are

motor	costs (\$)	load (kW)
а	2,400	79.0
b	2,900	77.5

☐ The motor is used 1,600 hours per year and

electricity costs are constant at 0.08 \$/kWh

☐ We evaluate yearly energy costs for *the two motors*

$$A_t^a = (79.0 \ kW)(1600 \ h)(.08 \ kWh) = \$10,112$$

$$t = 1, 2, \dots, 20$$

$$A_t^b = (77.5 \ kW)(1600 \ h)(.08 \ / \ kWh) = \$9,920$$

 \Box We next evaluate the present worth of a and b

$$P^{a} = 2,400 + 10,112 \left(\sum_{t=1}^{20} (1.1)^{-t} \right) - 8.5136$$

$$= \$88,489$$

$$P^{b} = 2,900 + 9,920 \left(\sum_{t=1}^{20} (1.1)^{-t} \right) + 8.5136$$

$$= \$87,354$$

□ The difference

$$P^{a} - P^{b} = 88,489 - 87,354 = $1,135$$

 \Box Therefore, the purchase of motor b results in the

savings of \$1,135 under the specified 10 %

discount rate due to the use of the smaller load

motor over the 20 - year horizon

INFINITE HORIZON CASH – FLOW SETS

 \square Consider a uniform cash – flow set with $n \to \infty$

$${A_t = A : t = 0, 1, 2, ...}$$

Then,

$$P = A \frac{\left(1 - \beta^n\right)}{d} \xrightarrow[n \to \infty]{} A \frac{1}{d}$$

□ For an infinite horizon uniform cash – flow set

INFINITE HORIZON CASH – FLOW SETS

$$\frac{A}{P} = d$$

 \Box We may view d as the capital recovery factor with the

following interpretation:

for an initial investment of P, the amount

$$d * P = A$$

is recovered annually in terms of returns

on investment

■ We consider a cash – flow set

$${A_t = A : t = 0, 1, 2, ...}$$

 \square The value of d for which

$$P - \sum_{t=0}^{n} A_{t} \beta^{t} = 0$$

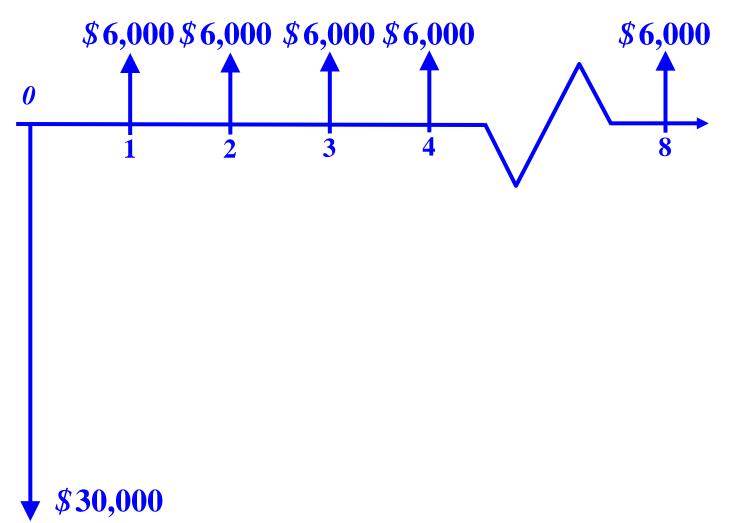
is called the internal rate of return (IRR)

☐ The *IRR* is a measure of how fast we recover an investment, or stated differently, the speed with

or rate at which the returns recover an investment

EXAMPLE: INTERNAL RATE OF RETURN

☐ Consider the following cash – flow set



■ The present value

$$P = -30,000 + 6,000 \frac{1-\beta^8}{d} = 0$$

has the solution

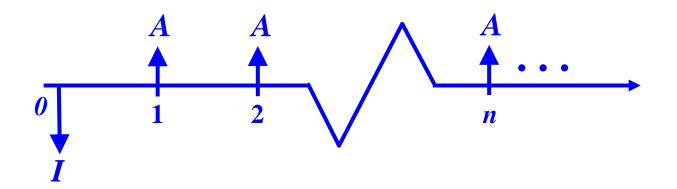
$$d \approx 12\%$$

☐ The interpretation is that under a 12 % discount rate,

the present value of the cash – flow set is θ and so

 $d \approx 12\%$ is the *IRR* for the given cash – flow set

□ Consider an infinite horizon simple investment



□ Therefore

$$d = \frac{A}{I} \blacktriangleleft$$

ratio of annual return to initial investment

□ Consider

$$I = $1,000$$

$$A = \$200$$

and

$$d = 20 \%$$

we interpret that the returns capture $20\,\%$ of the investment each year or equivalently that we have

a simple payback period of 5 years

EXAMPLE: EFFICIENT REFRIGERATOR

- □ A more efficient refrigerator incurs an investment of additional \$1,000 but provides \$200 of energy savings annually
- ☐ For a lifetime of 10 years, the *IRR* is computed from the solution of

$$\theta = -1,000 + 200 \frac{1 - \beta^{10}}{d}$$

or

EXAMPLE: EFFICIENT REFRIGERATOR

$$\frac{1-\beta^{10}}{d}=5$$

☐ IRR tables show that

$$\frac{1-\beta^{10}}{d}\bigg|_{d=15\%} = 5.02$$

and so the IRR is approximately 15 %

INFLATION IMPACTS

- □ Inflation is a general *increase* in the level of prices in an economy; equivalently, we may view inflation as a general *decline* in the value of the purchasing power of money
- ☐ Inflation is measured using prices: different products may have distinct escalation rates
- ☐ Typically, indices such as the *CPI* the *consumer*

price index - use a market basket of goods and

INFLATION IMPACTS

services as a proxy for the entire U.S. economy

- O reference basis is the year 1967 with the price of \$ 100 for the basket $\longrightarrow L_0$
- O in the year 1990, the same basket cost $\$374 \longrightarrow L_{21}$
- \bigcirc the average inflation rate j is estimated from

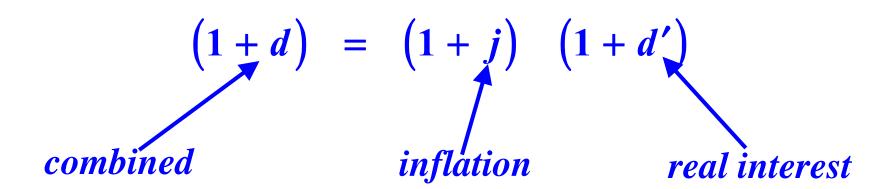
$$(1+j)^{23} = \frac{374}{100} = 3.74$$

and so

$$j = (3.74)^{\frac{1}{23}} - 1 \approx 0.059$$

INFLATION RATE

- ☐ The inflation rate contributes to the *overall market interest rate i*, **sometimes called the** *combined interest rate*
- \square We write, using d for i



interest rate

rate

rate

INFLATION

■ We obtain the following identities

$$d' = \frac{d-j}{1+j}$$

and

$$j = \frac{d-d'}{1+d'}$$

■ We express the cash – flow in the set

$${A_t: t = 0,1,2,...,n}$$
 in then current dollars

☐ The following is synonymous terminology

 $current \equiv then \ current \equiv inflated \equiv after \ inflation$

☐ An indexed or constant – worth cash – flow is one

that does not explicitly take inflation into

account, i.e., whatever amount in current inflated

dollars will buy the same goods and services as

in the reference year, typically, the year θ

□ The following terms are synonymous

 $constant \equiv indexed \equiv inflation free \equiv before inflation$

and we use them interchangeably

■ We define the set of constant currency flows

$$\{W_t: t = 0, 1, 2, ..., n\}$$

corresponding to the set

$${A_t: t = 0,1,2,...,n}$$

with each element A given in period t currency

■ We use the relationship

$$A_{t} = W_{t} (1+j)^{t}$$

or equivalently

$$W_{t} = A_{t} (1+j)^{-t}$$

with W_t expressed in reference year θ (today's)

dollars

☐ We have

$$P = \sum_{t=0}^{n} A_{t} \beta^{t}$$

$$= \sum_{t=0}^{n} W_{t} (i+j)^{t} (i+d)^{-t}$$

$$= \sum_{t=0}^{n} W_{t} (i+j)^{t} (i+j)^{-t} (i+d')^{-t}$$

$$=\sum_{t=0}^{n}W_{t}\left(i+d'\right)^{-t}$$

lacktriangle Therefore, the *real interest rate* d' is used to

discount the indexed cash - flows

In summary,

we discount current dollar cash – flow at d

we discount indexed dollar cash – flow at d'

- ☐ Whenever inflation is taken into account, it is con
 - venient to carry out the analysis in present worth
 - rather than future worth or on a cash flow basis
- \Box Under inflation (j > 0), it follows that a uniform
 - set of cash flows $\{A_t = A: t = 1, 2, ..., n\}$ implies a

real decline in the cash flows

EXAMPLE: INFLATION CALCULATIONS

 \Box Consider an annual inflation rate of j=4 % and

the cost for a piece of equipment is assumed

constant for the next 3 years in terms of today's \$

$$W_0 = W_1 = W_2 = W_3 = \$1,000$$

☐ The corresponding cash flows in current \$ are

$$A_0 = \$1,000$$

 $A_1 = 1,000(1+.04) = \$1,040$

EXAMPLE: INFLATION CALCULATIONS

$$A_2 = 1,000(1+.04)^2 = \$1,081.60$$

$$A_3 = 1,000(1+.04)^3 = \$1,124.86$$

 \square The interpretation of A_3 is that under 4 % inflation,

\$1,125 in 3 years will have the same value as

\$1,000 today; it must not be confused with the

present worth calculation

MOTOR ASSESSMENT EXAMPLE

- □ For the motor a or b purchase example, we consider the escalation of electricity at an annual rate of j = 5 %
- ☐ We compute the NPV taking into account the inflation (price escalation of 5 %) and d = 10%
- □ Then,

$$d' = \frac{d-j}{1+j} = \frac{.10-.05}{1+.05} = \frac{.05}{1.05} = 0.04762$$

MOTOR ASSESSMENT

☐ The savings of \$192 per year are in constant dollars

$$P_{savings} = \sum_{t=1}^{20} W_t (1+d^4)^{-t} -0.04762$$

and so

$$P_{savings} = \$2,442$$

□ The total savings are

$$P = -500 + P_{savings} = \$1,942$$

which are larger than those of \$ 1,135 without electricity price escalation

EXAMPLE: *IRR* **FOR** *HVAC* **RETROFIT** WITH INFLATION

- □ An energy efficiency retrofit of a commercial site reduces the *HVAC* load consumption to 0.8 *GWh* from 2.3 *GWh* and the peak demand by 0.15 *MW*
- □ Electricity costs are $60 \ \$/MWh$ and demand charges are $7,000 \ \$/(MW-mo)$ and these prices escalate at an annual rate of j = 5 %
- ☐ The retrofit requires a \$ 500,000 investment today and is planned to have a 15-year lifetime

EXAMPLE: *IRR* **FOR** *HVAC* **RETROFIT WITH INFLATION**

- ☐ We evaluate the *IRR* for this project
- □ The annual savings are

energy:
$$(2.3-0.8)GWh(60 \$/MWh)$$
 = \$90,000

demand:
$$(.15MW)(7000 \$ / (MWh - mo))12mo = \$ 12,600$$

$$total$$
 : $90,000 + 12,600 = $102,600$

 \square The *IRR* is the value of d' that results in

EXAMPLE: *IRR* **FOR** *HVAC* **RETROFIT WITH INFLATION**

$$\theta = -500,000 + 102,600 \frac{1 - (\beta')^{15}}{d'}$$

 \Box The table look up produces the d' of 19 % and

with inflation factored in, we have

$$(1+d) = (1+j)(1+d')$$

= $(1.05)(1.19)$

= 1.25

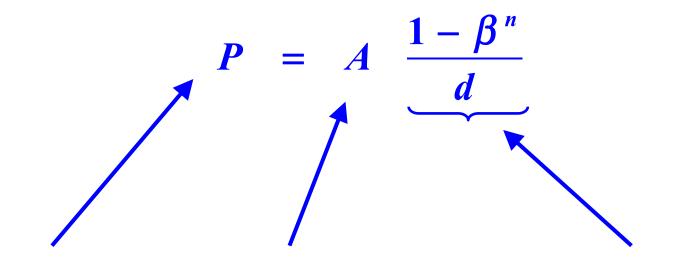
resulting in a combined IRR of 25 %

ANNUALIZED INVESTMENT

- □ A capital investment, such as a renewable energy project, requires funds, either borrowed from a bank, or obtained from investors, or taken from the owner's own accounts
- □ Conceptually, we may view the investment as a loan that converts the investment costs into a series of equal annual payments to pay back the loan with the interest

ANNUALIZED INVESTMENT

□ For this purpose, we use a uniform cash – flow set and use the relation



present worth

equal

payment term

equal payment series present worth factor

ANNUALIZED INVESTMENT

□ Therefore, the equal payment is given by

$$A = P \left(\frac{d}{1 - \beta^n} \right) \leftarrow \text{capital recovery factor}$$

□ The capital recovery factor measures the speed

with which the initial investment is repaid

EXAMPLE: EFFICIENT AIR CONDITIONER

- □ An efficiency upgrade of an air conditioner incurs a \$ 1,000 investment and results in savings of \$ 200 per year
- ☐ The \$ 1,000 is obtained as a 10 *year* loan repaid at 7 % interest
- □ The repayment on the loan is done as a uniform cash flow

$$A = 1,000 \frac{0.07}{1 - \beta^{10}} = \$ 142.38$$

EXAMPLE: EFFICIENT AIR CONDITIONER

□ The annual net savings are

$$200 - 142.38 = $57.62$$

and not only are the savings sufficient to pay back the loan in $10 \ years$, they also provide a yearly surplus of \$57.62

☐ The benefits/costs ratio is

$$\frac{200}{142.38} = 1.4$$

EXAMPLE: PV SYSTEM

☐ We consider a 3 - kWPV system whose capacity

factor
$$\kappa = 0.25$$

- ☐ The investment incurred \$10,000 and the funds
 - are obtained as a 20 year 6 % loan
- □ The annual loan repayments are

$$A = 10,000 \frac{0.06}{1-\beta^{20}} = 10,000(0.0872) = \$872$$

EXAMPLE: PV SYSTEM

□ The annual energy generated is

$$(3)(0.25)(8,760) = 6,570 \text{ kWh}$$

We can compute the unit costs of electricity for

break-even operation to be

$$\frac{872}{6,570} = 0.133 \ \$ / kWh$$

LEVELIZED BUS - BAR COSTS

- □ The comparison of various alternatives must be carried out on a consistent basis taking into account
 - O inflation impacts
 - O fixed investment costs
 - O variable costs
- □ The customary approach for cost valuation consists of the following steps:

LEVELIZED BUS - BAR COSTS

- O present worthing of all the cash flow
- O determining the equal amount of an equivalent
 - annual uniform cash flow set
- O determination of the yearly total generation
- □ The ratio of the equal amount to the total
 - generation is called the *levelized bus bar* costs of

power

- We consider the economics of a microturbine
 - with the characteristics given in the table
- ☐ We calculate
 - O annualized fixed costs

- initial year variable costs
- O inflation impacts

characteristic	value	units
investment costs	850	\$ / kW
heart rate	12,500	Btu / KWh
capacity factor	0.7	_
fuel costs (year 0)	4.00 x 10 ⁻⁶	\$ / Btu
annual fuel escalation rate	6	%
variable O&M costs	0.002	\$ / kWh
annual investor discount rate	10	%
fixed charge rate	12	%
life time	20	y

□ The annualized fixed costs are

$$\frac{(850 \, \text{\%/kW})(12 \, \text{\%})}{(8760 \, h)(0.70)} = 0.0166 \, \text{\%/kWh}$$

☐ The initial year variable costs are

$$A_0 = (12.500 \ Btu/kWh) (4 \times 10^{-6} \ \$/Btu) + 0.002 \ \$/kWh$$
$$= 0.052 \ \$/kWh$$

■ We next account for inflation and we compute

$$d' = \frac{d-j}{1+j} = \frac{0.1-0.06}{1+0.06} = 0.037736$$

□ The constant uniform cash – flow set with fuel

escalation incorporated is

$$A_{0} \cdot \frac{1 - (\beta')^{20}}{d'} = 0.052 \left[\frac{1 - \left(\frac{1}{1.037736}\right)^{20}}{0.0037736} \right]$$

and the levelized annual costs are

$$0.052 \quad \frac{\left(1 - \left(\frac{1}{1.037736}\right)^{20}}{0.0037736}\right) \left(\frac{0.10}{1 - \left(\frac{1}{1.1}\right)^{20}}\right) = 0.0847 \, \% kWh$$

□ The levelized bus – bar costs are, therefore,

$$0.0166 + 0.0847 = 0.1013$$
\$\text{\$\kappa kWh}\$