ECE330: Power Circuits & Electromechanics
Lecture 21. Four-quadrant control of
synchronous machines

Prof. Richard Y. Zhang
Univ. of Illinois at Urbana-Champaign
ryz@illinois.edu

Four-quadrant operations

Generator as a capacitor P Stator current limit limit

Today

1

· Review: Synchronous machines

- · Equivalent circuit model
- · Four-quadrant control of P & Q
- Examples

3

5 6

8

10

Today

9

- Review: Synchronous machines
- · Equivalent circuit model
- · Four-quadrant control of P & Q

11 12

Today

- Review: Synchronous machines
- · Equivalent circuit model
- · Four-quadrant control of P & Q
- · Examples

14

13

Arbitrary control of P & Q - Big picture

*Outside scope of ECE 330

Decoupled

Coupled ¹

Decoupled

Real Power P

Torque angle δ Excitation voltage |**E**|

Reactive Power Q

Real current I_d ("direct")

*Mech power input P_m Rotor field current I_r

Imag current I_a ("quadrature")

15

17 18

$$\begin{split} Q_{T,\mathrm{src}} &= \frac{3V(E\cos\delta - V)}{X} & \text{ Formula sheet in previous exams} \\ P_{T,\mathrm{src}} &= \frac{3VE\sin\delta}{X} & \text{ For } \textit{R}_{\text{z}} = 0: \ \textit{P}_{T} = \frac{3\textit{V}_{\text{z}}|E_{\sigma r}|}{\textit{X}_{\text{s}}}\sin(-\delta) \\ Q_{T} &= \frac{3\textit{V}_{\text{z}}^{2}}{\textit{X}_{\text{s}}} - \frac{3\textit{V}_{\text{s}}|E_{\sigma r}|}{\textit{X}_{\text{s}}}\cos(\delta) \end{split}$$

For
$$R_s = 0$$
: $P_T = \frac{3V_s |\overline{E_{ar}}|}{X_s} \sin(-\delta)$

$$Q_T = \frac{3V_s^2}{X_s} - \frac{3V_s|\overline{E_{ar}}|}{X_s}\cos(\delta)$$

19

Today

- · Review: Synchronous machines
- · Equivalent circuit model
- Four-quadrant control of P & Q
- · Examples

20

22

Example 6.5

Example 6.5 A three-phase, 60 Hz, six-pole, wye-connected synchron generator is driven by a turbine that delivers 16910 W to the shaft. T friction and windage losses are 500 W. The field current is adjusted so the the voltage E_{ar} proportional to field current on a per phase basis is E_{ar} 355 V. The generator supplies a load at 440 V (line-line). Find spe \overline{E}_{ar} , \overline{I}_a , and real and reactive power output of the generator. Synchronous reactance $x_s = 5\Omega$.

 40π mech. rad/sec $P_T = P_m = (16910 - 500)$ W = 16410 W

A three-phase source of voltage 355V (phase-to-neutral) is serving a single load connected through a feeder with impedance j5 Ω. The load draws 16410 W at an unknown PF. The voltage across the load is 440 V (line-to-line). Find δ, current phasor, power.

A three-phase source of voltage 355V (phase-to-neutral) is serving a single load connected through a feeder with impedance j5 Ω. The load draws 16410 W at an unknown PF. The voltage across the load is 440 V (line-to-line). Find δ , current phasor, power.

$$P_{T,\text{src}} = 3VI_d, Q_{T,\text{src}} = -3VI_q$$

21