

October 29th, 2024

Maxwell's Wave Equation

Assumptions: $\rho = 0$, $\sigma = 0$, $\vec{J} = 0$, i.e. region is a source-free perfect dielectric.

Wave equation: $\nabla^2 \vec{E} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2} \text{ OR } \nabla^2 \tilde{E} = -\omega^2 \mu \epsilon \tilde{E}$. Solutions are TEM waves. \vec{E} and \vec{H} point **perpendicular** to the direction of travel.

General form of cosinusoidal solution:

Wave Equation in Material Media

Assumptions: $\rho = 0$, $\vec{J} = 0$, i.e. region is a source-free. $\sigma \neq 0$ now!

Wave equation: $\nabla^2 \tilde{E} = (j\omega\mu)(\sigma + j\omega\epsilon)\tilde{E}$. Solutions are TEM waves. \vec{E} and \vec{H} point **perpendicular** to the direction of travel.

General form of cosinusoidal solution:

The Big Table

	Condition	eta	lpha	$ \eta $	au	$\lambda = \frac{2\pi}{\beta}$	$\delta = \frac{1}{\alpha}$
Perfect	$\sigma = 0$	$\omega\sqrt{\epsilon\mu}$	0	$\sqrt{\frac{\mu}{\epsilon}}$	0	$\frac{2\pi}{\omega\sqrt{\epsilon\mu}}$	∞
dielectric	0 0	$\omega \sqrt{c \mu}$	0	\mathbf{V} ϵ	Ŭ	$\omega\sqrt{\epsilon\mu}$	00
Imperfect	$\sigma = 1$		$\beta \underline{1} \sigma \underline{\sigma} / \mu$	$\sim \sqrt{rac{\mu}{\epsilon}}$	σ	2π	$2 \sqrt{\epsilon}$
dielectric	$\frac{\sigma}{\omega\epsilon} \ll 1$	$\sim \omega \sqrt{\epsilon \mu}$	$\beta \frac{1}{2} \frac{\sigma}{\omega \epsilon} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$	$\sim \sqrt{\epsilon}$	$\sim rac{\sigma}{2\omega\epsilon}$	$\sim rac{2\pi}{\omega\sqrt{\epsilon\mu}}$	$\frac{2}{\sigma}\sqrt{\frac{c}{\mu}}$
Good	$\sigma > 1$	$\sqrt{\pi f \mu \sigma}$	$au / \pi f \mu \sigma$	$\sqrt{\frac{\omega\mu}{\sigma}}$	45°	2π	1
conductor	$\frac{\sigma}{\omega\epsilon} \gg 1$	$\sim \sqrt{\pi f \mu \sigma}$	$\sim \sqrt{\pi f \mu \sigma}$	$\sqrt{\sigma}$	40	$\sim \frac{2\pi}{\sqrt{\pi f\mu\sigma}}$	$\sim \sqrt{\pi f \mu \sigma}$
Perfect	$\sigma = \infty$	20	\sim	0		0	0
conductor	$\sigma = \infty$	∞	∞	0	_	0	0

Problem 1

Which of the following are true?

- 1. For a wave propagating in a good conductor, the wave amplitude decays to less than 1% of its initial value after traveling only a few wavelengths.
- 2. Wave propagation velocity never depends on frequency.
- 3. Skin depth is infinite for perfect conductors.
- 4. Low frequencies are preferable to high frequencies in applications requiring propagating through conductors.
- 5. Perfect dielectric is an example of a lossy media.
- 6. E and H are out of phase when propagating through imperfect dielectrics.

Problem 2

- For what (angular) frequencies does the material act like an imperfect dielectric? For what (angular) frequencies does the material act like a good conductor?
- It is discovered that $\vec{E}(0,t) = 4\cos(2*10^8t)\hat{x}$ and that the wave is travelling in the y-direction. Find: $\vec{E}(x,y,z,t)$, $\vec{H}(x,y,z,t)$, $\tilde{E}(x,y,z)$, $\tilde{H}(x,y,z)$, λ , v_p , $<\vec{S}>$
- Find the distance it takes for the wave's amplitude to decay by 95%. $e^{-3} \approx 0.05$.

- For what frequencies does the material act like an imperfect dielectric? For what (angular) frequencies does the material act like a good conductor?
- It is discovered that $\vec{E}(0,t) = 4\cos(2*10^8t)\hat{x}$ and that the wave is travelling in the y-direction. Find: $\vec{E}(x,y,z,t)$, $\vec{H}(x,y,z,t)$, $\tilde{E}(x,y,z)$, $\tilde{H}(x,y,z)$, λ , v_p , $<\vec{S}>$
- Find the distance it takes for the wave's amplitude to decay by 95%. $e^{-3} \approx 0.05$.

- For what frequencies does the material act like an imperfect dielectric? For what (angular) frequencies does the material act like a good conductor?
- It is discovered that $\vec{E}(0,t) = 4\cos(2*10^8t)\hat{x}$ and that the wave is travelling in the y-direction. Find: $\vec{E}(x,y,z,t)$, $\vec{H}(x,y,z,t)$, $\tilde{E}(x,y,z)$, $\tilde{H}(x,y,z)$, λ , v_p , $<\vec{S}>$
- Find the distance it takes for the wave's amplitude to decay by 95%. $e^{-3} \approx 0.05$.

- For what frequencies does the material act like an imperfect dielectric? For what (angular) frequencies does the material act like a good conductor?
- It is discovered that $\vec{E}(0,t) = 4\cos(2*10^8t)\hat{x}$ and that the wave is travelling in the y-direction. Find: $\vec{E}(x,y,z,t)$, $\vec{H}(x,y,z,t)$, $\tilde{E}(x,y,z)$, $\tilde{H}(x,y,z)$, λ , v_p , $<\vec{S}>$
- Find the distance it takes for the wave's amplitude to decay by 95%. $e^{-3} \approx 0.05$.

- For what frequencies does the material act like an imperfect dielectric? For what (angular) frequencies does the material act like a good conductor?
- It is discovered that $\vec{E}(0,t) = 4\cos(2*10^8t)\hat{x}$ and that the wave is travelling in the y-direction. Find: $\vec{E}(x,y,z,t)$, $\vec{H}(x,y,z,t)$, $\tilde{E}(x,y,z)$, $\tilde{H}(x,y,z)$, λ , v_p , $<\vec{S}>$
- Find the distance it takes for the wave's amplitude to decay by 95%. $e^{-3} \approx 0.05$.

- For what frequencies does the material act like an imperfect dielectric? For what (angular) frequencies does the material act like a good conductor?
- It is discovered that $\vec{E}(0,t) = 4\cos(2*10^8t)\hat{x}$ and that the wave is travelling in the y-direction. Find: $\vec{E}(x,y,z,t)$, $\vec{H}(x,y,z,t)$, $\tilde{E}(x,y,z)$, $\tilde{H}(x,y,z)$, λ , v_p , $<\vec{S}>$
- Find the distance it takes for the wave's amplitude to decay by 95%. $e^{-3} \approx 0.05$.

- For what frequencies does the material act like an imperfect dielectric? For what (angular) frequencies does the material act like a good conductor?
- It is discovered that $\vec{E}(0,t) = 4\cos(2*10^8t)\hat{x}$ and that the wave is travelling in the y-direction. Find: $\vec{E}(x,y,z,t)$, $\vec{H}(x,y,z,t)$, $\tilde{E}(x,y,z)$, $\tilde{H}(x,y,z)$, λ , v_p , $<\vec{S}>$
- Find the distance it takes for the wave's amplitude to decay by 95%. $e^{-3} \approx 0.05$.

Wave Polarization

Polarization is how the tip of E varies over time.

Linear: In phase Circular: 90 degrees out-of-phase with equal magnitude • Right-Handed

- Right-Handed
- Left-Handed

Elliptical: Anything else

Wave Polarization

Example of linear polarization: $\vec{E} = 3\cos(\omega t - \beta z)\hat{x}$

Example of right-handed circular polarization (RHCP): $\vec{E} = 3\cos(\omega t - \beta z)\hat{x} + 3\cos\left(\omega t - \beta z - \frac{\pi}{2}\right)\hat{y}$

Example of left-handed circular polarization (LHCP):

$$\vec{E} = 3\cos(\omega t - \beta z)\hat{x} - 3\cos(\omega t - \beta z - \frac{\pi}{2})\hat{y}$$

Wave Polarization

Example of elliptical polarization:

$$\vec{E} = 3\cos(\omega t - \beta z)\hat{x} + \cos\left(\omega t - \beta z - \frac{\pi}{2}\right)\hat{y}$$

Example of elliptical polarization:

$$\vec{E} = 3\cos(\omega t - \beta z)\,\hat{x} + 3\cos\left(\omega t - \beta z - \frac{\pi}{3}\right)\hat{y}$$

What about this?

$$\vec{E} = 2\cos(\omega t - \beta z)\hat{x} + 4\cos(\omega t - \beta z)\hat{y}$$

Problem 3

We have a wave propagating in the z-direction such that the x-direction and y-direction waves are 270 degrees out of phase. What polarization do they have?

We have a wave propagating in the z-direction such that the x-direction and the y-direction waves have the same amplitude. What polarization do they have?

We have a wave propagating in the z-direction such that the x-direction and the y-direction waves have unequal amplitude but equal phase. What's the polarization?

Problem 4

Assuming free space conditions, determine:

- The phasor electric field
- The phasor magnetic field
- The electric field wave polarization
- The magnetic field wave polarization

for the following electric field wave: $\vec{E} = 5 \cos(\omega t - \beta y) \hat{x} + 5 \sin(\omega t - \beta y) \hat{z}$ V/m.

Assuming free space conditions, determine:

- The phasor electric field
- The phasor magnetic field
- The wave polarization

for the following electric field wave: $\vec{E} = 5 \cos(\omega t - \beta y) \hat{x} + 5 \sin(\omega t - \beta y) \hat{z}$ V/m.

Assuming free space conditions, determine:

- The phasor electric field
- The phasor magnetic field
- The wave polarization

for the following electric field wave: $\vec{E} = 5 \cos(\omega t - \beta y) \hat{x} + 5 \sin(\omega t - \beta y) \hat{z}$ V/m.

Midterm 1 equations, in one place

 $\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r}$ $\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B})$ $\vec{E} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r}$

 $\hat{n} \cdot \left(\vec{D}_1 - \vec{D}_2\right) = \rho_s$ $\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$ $\hat{n} \cdot \left(\vec{P}_1 - \vec{P}_2\right) = -\rho_{b,s}$

$$\begin{split} \epsilon & \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}} \\ & \oiint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}} \\ & \iiint \rho dV = Q_{\text{enclosed}} \\ & \oiint \vec{B} \cdot d\vec{S} = 0 \\ & I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t} \end{split}$$

$$\nabla \times \vec{E} = 0$$

$$\vec{E} = -\nabla V$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

 $\epsilon = \epsilon_0 (1 + \chi_e)$ $\vec{P} = \epsilon_0 \chi_e \vec{E} \qquad \nabla \cdot$ $\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E} \qquad \nabla \cdot$ $\vec{J} = \sigma \vec{E} \qquad -\nabla$ $\rho_b = -\nabla \cdot \vec{P} \qquad -\nabla$ $\nabla \cdot \epsilon_0 \vec{E} = \rho_f + \rho_b$

$$\begin{aligned} \nabla \cdot \vec{D} &= \rho \\ \nabla \cdot \vec{J} &= -\frac{\partial \rho}{\partial t} \\ -\nabla^2 V &= \frac{\rho}{\epsilon} \end{aligned}$$

Midterm 2 equations, in one place

Q = CV $\vec{B} = \frac{\mu I}{2\pi r} \hat{\phi}$ $\Psi = \iint_{S} \vec{B} \cdot d\vec{S} \qquad \qquad v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu\epsilon}}$ $G = \frac{\sigma}{c}C$ $R = \frac{1}{G}$ $d\vec{B} = \frac{\mu I d\vec{\ell} \times \hat{r}}{4\pi r^2}$ $-\frac{d}{dt}\iint_{C}\vec{B}\cdot d\vec{S} = \oint_{C}\vec{E}\cdot d\vec{l} \qquad \omega = 2\pi f = \frac{2\pi}{T}$ $\vec{J}_b = \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$ $\oint_{C} \vec{H} \cdot d\vec{\ell} = \iint_{C} \vec{J} \cdot d\vec{S}$ $\eta = \frac{\sqrt{\mu}}{\sqrt{\epsilon}}$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$ $\beta = \omega \sqrt{\mu \epsilon}$ $\oint_{C} \vec{B} \cdot d\vec{\ell} = \mu I_{\text{encl}}$ $\oint \vec{E} \cdot d\vec{l} = \varepsilon$ $\vec{M} = \chi_m \vec{H}$ $\nabla^2 \vec{E} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$ $\vec{B} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$ $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $\varepsilon = \frac{W}{q} = \oint_C \frac{\vec{F}}{q} \cdot d\vec{l}$ $A\cos(\omega t - \beta x)\hat{z} \leftrightarrow Ae^{-j\beta x}$ $\vec{S} = \vec{E} \times \vec{H}$ $\nabla \cdot \vec{B} = 0$ $\tilde{S} = \tilde{E} \times \tilde{H}^*$
< $\vec{S} > = \frac{1}{2} \operatorname{Re} \{ \tilde{E} \times \tilde{H}^* \}$ $\Psi = LI$ $\hat{n} \cdot \left(\vec{B}_1 - \vec{B}_2 \right) = 0$ $\varepsilon = IR$ $\hat{n} \times \left(\vec{H}_1 - \vec{H}_2 \right) = \vec{J}_s$ $\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon \vec{E} \cdot \vec{E} + \frac{1}{2} \mu \vec{H} \cdot \vec{H} \right) + \nabla \cdot \vec{S} + \vec{J} \cdot \vec{E} = 0$ $\hat{n} \times \left(\vec{M}_1 - \vec{M}_2 \right) = \vec{J}_{b,s}$

Midterm 3 equations, in one place

	Condition	β	α	$ \eta $	au	$\lambda = \frac{2\pi}{\beta}$	$\delta = \frac{1}{\alpha}$
Perfect	$\sigma = 0$	$\omega\sqrt{\epsilon\mu}$	0	<u>/µ</u>	0	2π	∞
dielectric	0 = 0	$\omega \sqrt{\epsilon \mu}$	0	$\sqrt{\epsilon}$	0	$\frac{2\pi}{\omega\sqrt{\epsilon\mu}}$	\sim
Imperfect	$\frac{\sigma}{1}$	$\sim \omega \sqrt{\epsilon \mu}$	$\beta \underline{1} \sigma \underline{\sigma} / \mu$	$\sim \sqrt{rac{\mu}{\epsilon}}$	$\sigma = \frac{\sigma}{\sigma}$	2π	$\underline{2}$ $\overline{\epsilon}$
dielectric	$\frac{\sigma}{\omega\epsilon} \ll 1$	$\sim \omega \sqrt{\epsilon \mu}$	$\beta \frac{1}{2} \frac{\sigma}{\omega \epsilon} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$	$\sqrt{\epsilon}$	$\sim rac{\sigma}{2\omega\epsilon}$	$\sim rac{2\pi}{\omega\sqrt{\epsilon\mu}}$	$\overline{\sigma}\sqrt{\mu}$
Good	$\sigma \gg 1$	$\sim \sqrt{\pi f \mu \sigma}$	$\sim \sqrt{\pi f \mu \sigma}$	$\sqrt{\frac{\omega\mu}{\sigma}}$	45°	2π	1
conductor	$\frac{\sigma}{\omega\epsilon} \gg 1$	$\sim \sqrt{\pi f \mu \sigma}$	$\sim \sqrt{\pi j \mu 0}$	$\sqrt{\sigma}$	40	$\sim \sqrt{\pi f \mu \sigma}$	$\sim \sqrt{\pi f \mu \sigma}$
Perfect	$\sigma = \infty$	∞	∞	0		0	0
conductor	$v = \infty$	\sim	\sim	0	_	0	0

$$v = \frac{\omega}{\beta} = \lambda f$$
 $\nabla^2 \tilde{E} = (j\omega\mu)(\sigma + j\omega\epsilon)\tilde{E}$

Units

Charge Q: C Current I: A Electric field strength \vec{E} : N/C or V/m Electric flux density \vec{D} : C/m² Polarization field \vec{P} : C/m² Electric potential V: V Capacitance C: F Magnetic flux density \vec{B} : T or Wb/m² Magnetic field strength \vec{H} : A/m Magnetic flux Ψ : Wb Electromotive force ε : V Inductance L: H Electric permittivity ϵ : F/m Magnetic permeability μ : H/m Conductivity σ : Si/m

Charge density ρ : C/m³ Surface charge density ρ_s : C/m² Current density \vec{J} : A/m²

Intrinsic impedance η : Ohm Wave number β : rad/m

Any questions?

