

October 22nd, 2024

Maxwell's Wave Equation

Assumptions: $\rho = 0$, $\sigma = 0$, $\vec{J} = 0$, i.e. region is a source-free perfect dielectric.

Wave equation: $\nabla^2 \vec{E} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$. Solutions are 'TEM waves.' TEM = Transverse ElectroMagnetic.

 \vec{E} and \vec{H} point **perpendicular** to the direction of travel.

Why can't they point in the direction of travel?

General form of cosinusoidal solution:

Wave Formulae

$$v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu\epsilon}}$$

$$\beta = \omega \sqrt{\mu \epsilon}$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

$$\eta = \frac{\sqrt{\mu}}{\sqrt{\epsilon}}$$

Getting E from H and vice versa

Poynting Vector & Theorem

 $\vec{S} = \vec{E} \times \vec{H}$. Units: W/m². "Instantaneous" power per unit area passing through surface in direction of \vec{S}

Energy unit volume balance equation: $\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon \vec{E} \cdot \vec{E} + \frac{1}{2} \mu \vec{H} \cdot \vec{H} \right) + \nabla \cdot \vec{S} + \vec{J} \cdot \vec{E} = 0$

Phasor Notation

$$\vec{E}(x,t) = A\cos(\omega t - \beta x)\hat{z} = \operatorname{Re}\left\{Ae^{j\omega t}e^{-j\beta x}\right\} \leftrightarrow Ae^{-j\beta x} = \tilde{E}(x)$$

Time domain

Phasor

$$\sin(x) = \cos\left(x - \frac{\pi}{2}\right)$$

Time-Averaging

If TEM wave \vec{E} is cosinusoidal,

- Then corresponding \vec{H} is cosinusoidal
- Then phasors \tilde{E} and \tilde{H} exist
- Also, $\vec{S} = \vec{E} \times \vec{H}$ (instantaneous power per unit area) is cosinusoidal squared
- We can write \vec{S} in phasor form too: $\tilde{S} = \tilde{E} \times \tilde{H}^*$
- Time-average of cosinusoidal squared is ½ of the magnitude of the cosinusoidal:

$$\langle \vec{S} \rangle = \frac{1}{2} \operatorname{Re} \{ \tilde{E} \times \tilde{H}^* \}$$

Problem 1

What is the time derivative of a phasor? What are Maxwell's Equations in phasor form?

Problem 2

Given a uniform TEM wave with $\vec{E}(x,t) = -3\cos(\omega t + \beta x)\hat{z}$ V/m with f = 100MHz and $v = \frac{2}{3}c$ propagating through a homogenous medium with $\epsilon = 1.5\epsilon_0$, find $\tilde{E}(x), \mu_r, \lambda, \beta, \vec{H}(x,t), \tilde{H}(x)$, instantaneous power per unit area crossing x = 1 in $+\hat{x}$ direction, and time-averaged power per unit area crossing x = 1 in $+\hat{x}$ direction.

Radiation from Current Sheets

Static \vec{J}_s on a current sheet produces static \vec{H} and no \vec{E} , as seen before.

Time-varying \vec{J}_s produces time-varying \vec{H} , with changes in \vec{J}_s causing changes in \vec{H} propagating out of the current sheet. To satisfy Faraday's Law, time-varying \vec{H} must produce accompanying time-varying \vec{E} .

Time-varying current sheets produce TEM waves propagating outward!

Problem 3

On the x = 0 plane a current sheet exists carrying $\vec{J}_s = 2t(u(t) - u(t-2))\hat{z}$ A/m. Regions adjacent to the sheet are vacuum.

- 1. Plot $\vec{J}_s(t)$.
- 2. Determine and plot nonzero components of \vec{E} and \vec{H} against t at $z = 9 * 10^8$ m.
- 3. Determine and plot nonzero components of \vec{E} and \vec{H} against t at $z = -9 * 10^8$ m.
- 4. Determine and plot nonzero components of \vec{E} and \vec{H} against z at t = 4s.
- 5. Determine and plot nonzero components of \vec{E} and \vec{H} against z at t = 1s.

Midterm 1 equations, in one place

 $\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r}$ $\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B})$ $\vec{E} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r}$

 $\hat{n} \cdot \left(\vec{D}_1 - \vec{D}_2\right) = \rho_s$ $\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$ $\hat{n} \cdot \left(\vec{P}_1 - \vec{P}_2\right) = -\rho_{b,s}$

$$\begin{split} \epsilon & \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}} \\ & \oiint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}} \\ & \iiint \rho dV = Q_{\text{enclosed}} \\ & \oiint \vec{B} \cdot d\vec{S} = 0 \\ & I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t} \end{split}$$

$$\nabla \times \vec{E} = 0$$

$$\vec{E} = -\nabla V$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

 $\epsilon = \epsilon_0 (1 + \chi_e)$ $\vec{P} = \epsilon_0 \chi_e \vec{E} \qquad \nabla \cdot$ $\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E} \qquad \nabla \cdot$ $\vec{J} = \sigma \vec{E} \qquad -\nabla$ $\rho_b = -\nabla \cdot \vec{P} \qquad -\nabla$ $\nabla \cdot \epsilon_0 \vec{E} = \rho_f + \rho_b$

$$\begin{aligned} \nabla \cdot \vec{D} &= \rho \\ \nabla \cdot \vec{J} &= -\frac{\partial \rho}{\partial t} \\ -\nabla^2 V &= \frac{\rho}{\epsilon} \end{aligned}$$

Midterm 2 equations, in one place

Q = CV $\vec{B} = \frac{\mu I}{2\pi r} \hat{\phi}$ $\Psi = \iint_{S} \vec{B} \cdot d\vec{S} \qquad \qquad v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu\epsilon}}$ $G = \frac{\sigma}{c}C$ $R = \frac{1}{G}$ $d\vec{B} = \frac{\mu I d\vec{\ell} \times \hat{r}}{4\pi r^2}$ $-\frac{d}{dt}\iint_{C}\vec{B}\cdot d\vec{S} = \oint_{C}\vec{E}\cdot d\vec{l} \qquad \omega = 2\pi f = \frac{2\pi}{T}$ $\vec{J}_b = \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$ $\oint_{C} \vec{H} \cdot d\vec{\ell} = \iint_{C} \vec{J} \cdot d\vec{S}$ $\eta = \frac{\sqrt{\mu}}{\sqrt{\epsilon}}$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$ $\beta = \omega \sqrt{\mu \epsilon}$ $\oint_{C} \vec{B} \cdot d\vec{\ell} = \mu I_{\text{encl}}$ $\oint \vec{E} \cdot d\vec{l} = \varepsilon$ $\vec{M} = \chi_m \vec{H}$ $\nabla^2 \vec{E} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$ $\vec{B} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$ $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $\varepsilon = \frac{W}{q} = \oint_C \frac{\vec{F}}{q} \cdot d\vec{l}$ $A\cos(\omega t - \beta x)\hat{z} \leftrightarrow Ae^{-j\beta x}$ $\vec{S} = \vec{E} \times \vec{H}$ $\nabla \cdot \vec{B} = 0$ $\tilde{S} = \tilde{E} \times \tilde{H}^*$
< $\vec{S} > = \frac{1}{2} \operatorname{Re} \{ \tilde{E} \times \tilde{H}^* \}$ $\Psi = LI$ $\hat{n} \cdot \left(\vec{B}_1 - \vec{B}_2 \right) = 0$ $\varepsilon = IR$ $\hat{n} \times \left(\vec{H}_1 - \vec{H}_2 \right) = \vec{J}_s$ $\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon \vec{E} \cdot \vec{E} + \frac{1}{2} \mu \vec{H} \cdot \vec{H} \right) + \nabla \cdot \vec{S} + \vec{J} \cdot \vec{E} = 0$ $\hat{n} \times \left(\vec{M}_1 - \vec{M}_2 \right) = \vec{J}_{b,s}$

Units

Charge Q: C Current I: A Electric field strength \vec{E} : N/C or V/m Electric flux density \vec{D} : C/m² Polarization field \vec{P} : C/m² Electric potential V: V Capacitance C: F Magnetic flux density \vec{B} : T or Wb/m² Magnetic field strength \vec{H} : A/m Magnetic flux Ψ : Wb Electromotive force ε : V Inductance L: H Electric permittivity ϵ : F/m Magnetic permeability μ : H/m Conductivity σ : Si/m

Charge density ρ : C/m³ Surface charge density ρ_s : C/m² Current density \vec{J} : A/m²

Intrinsic impedance η : Ohm Wave number β : rad/m

Office Hours

Any questions?

