

October 15th, 2024

Last week: Electrodynamics

Maxwell's Correction $\nabla \times \vec{H} = \vec{J}$

Bound Current & Magnetization Field

Just like we had bound charges, we also have bound currents.

- Created by electrons 'orbiting' a nucleus
- Created by intrinsic spin

Just like we had polarization field, we also have magnetization field. Magnetization field is divergence-free, much like B-fields.

Just like we had electric susceptibility χ_{e} , we have magnetic susceptibility χ_m .

What do you need to know?

Bound Current & Magnetization Field
 $\vec{J}_b = \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$

$$
\vec{B} = \mu_0 (1 + \chi_m) \vec{H} = \mu_0 \mu_r \vec{H} = \mu \vec{H}
$$

Material Characterizations

Material Characterizations
1. Diamagnetic: $\chi_m < 0$.
No permanent magnetic field. 1. Diamagnetic: $\chi_m < 0$.

No permanent magnetic field.

Any applied \vec{B} induces a small \vec{M} pointing against \vec{B} .

2. Paramagnetic: $\chi_m > 0$.

Any applied \vec{B} induces a small \vec{M} that reinforces $\vec{B$

Maxwell's Equations

Free space Material Media

Maxwell's Equations

Everywhere and always

Boundary Conditions

$$
\hat{n} \cdot (\vec{D}_1 - \vec{D}_2) = \rho_s
$$

$$
\hat{n} \cdot (\vec{B}_1 - \vec{B}_2) = 0
$$

$$
\hat{n} \cdot (\vec{P}_1 - \vec{P}_2) = -\rho_{b,s}
$$

 $\hat{n} \times (\vec{E}_1 - \vec{E}_2) = 0$ $\hat{n} \times (\vec{H}_1 - \vec{H}_2) = \vec{J}_s$ $\hat{n} \times (\vec{M}_1 - \vec{M}_2) = \vec{J}_{b,s}$

Problem 1

Maxwell's Wave Equation

Assumptions: $\rho = 0$, $\sigma = 0$, $\vec{J} = 0$, i.e. region is a source-free perfect dielectric.

Wave equation: $\nabla^2 \vec{E} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$. Solutions are 'EM way ∂t^2 . Cold trong and Live we . Solutions are 'EM waves.' Wave equation: $\nabla^2 \vec{E} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$. Solutions are 'EM
General form of cosinusoidal solution:

Wave Formulae

$$
v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu \epsilon}}
$$

$$
\beta = \omega \sqrt{\mu \epsilon}
$$

$$
\omega = 2\pi f = \frac{2\pi}{T}
$$

$$
\eta = \frac{\sqrt{\mu}}{\sqrt{\epsilon}}
$$

Problem 2: Two imposters among us…

Which two of the following are not a valid solution to the wave equation?

- 1. $\vec{E} = 5 \cos(3t + 4z) \hat{x}$
- 2. $\vec{E} = 5 \cos(3t + 4x) \hat{x}$
- 3. $\vec{E} = 3\hat{x}$
- 4. $\vec{E} = \sin(5t + 4r)\hat{y}$
- 5. $\vec{E} = \sin(5t + 3z) \hat{y}$
- 6. $\vec{E} = \sin(5t 3x) \hat{z} + \sin(4t 3y) \hat{x}$

TEM Waves

TEM = Transverse electromagnetic.

- \vec{E} and \vec{H} point **perpendicular** to the direction of travel.
- Why can't they point in the direction of travel?

Midterm 1 equations, in one place

 1^{42} $\hat{ }$ $\epsilon \Phi$ 0^{T} 99 2' as $\mathcal{A} \cap \overrightarrow{D}$ $2 \quad \alpha \quad \text{d}b \, F$ 0^{r} $I 2¹$ and $\frac{1}{2}$ $\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B})$

$$
\hat{n} \cdot (\vec{D}_1 - \vec{D}_2) = \rho_s
$$

$$
\hat{n} \times (\vec{E}_1 - \vec{E}_2) = 0
$$

$$
\hat{n} \cdot (\vec{P}_1 - \vec{P}_2) = -\rho_{b,s}
$$

$$
\vec{P} = \epsilon_0 \chi_e \vec{E}
$$

$$
\vec{D} = \epsilon_0 \vec{E} + \vec{P}
$$

$$
\epsilon \oint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}}
$$

\n
$$
\oint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}}
$$

\n
$$
\iiint \rho dV = Q_{\text{enclosed}}
$$

\n
$$
\oint \vec{B} \cdot d\vec{S} = 0
$$

\n
$$
I = \oint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t}
$$

2C
\n
$$
\nabla \times \vec{E} = 0
$$
\n
$$
\vec{E} = -\nabla V
$$
\n
$$
\oint \vec{E} \cdot d\vec{l} = 0
$$
\n
$$
V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}
$$
\n
$$
d\vec{E} = -\int_{a}^{b} d\vec{l} \cdot d\vec{l}
$$

$$
\epsilon = \epsilon_0 (1 + \chi_e)
$$

\n
$$
\vec{P} = \epsilon_0 \chi_e \vec{E}
$$

\n
$$
\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E}
$$

\n
$$
\vec{J} = \sigma \vec{E}
$$

\n
$$
\rho_b = -\nabla \cdot \vec{P}
$$

\n
$$
\nabla \cdot \epsilon_0 \vec{E} = \rho_f + \rho_b
$$

\n
$$
\vec{E} = \rho_f + \rho_b
$$

$$
\oint \vec{D} \cdot d\vec{S} = \iiint \nabla \cdot \vec{D} dV
$$

$$
\oint \vec{E} \cdot d\vec{l} = \iint (\nabla \times \vec{E}) \cdot d\vec{S}
$$

$$
\int_{a}^{b} \nabla V \cdot d\vec{l} = V(b) - V(a)
$$

Midterm 2 equations, in one place

 $\Psi = \iint_{S} \vec{B} \cdot d\vec{S}$ $v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu \epsilon}}$ $Q = CV$
 $Q = CV$
 $Q = CV$
 $Q = CV$
 $Q = CV$ $\vec{B} = \frac{\mu I}{2\pi r} \hat{\phi}$ $d\vec{B} = \frac{\mu I d\vec{\ell} \times \hat{r}}{4\pi r^2}$ $-\frac{d}{dt} \iint \vec{B} \cdot d\vec{S} = \oint \vec{E} \cdot d\vec{l}$ $\omega = 2\pi f = \frac{2\pi}{T}$ $S \qquad \qquad J_C \qquad \qquad \qquad \qquad$ $b = \frac{1}{\lambda t} + V \times M$ C JJ_S $V \times E = \oint \vec{E} \cdot d\vec{l} = \varepsilon$ encl Φ $2\vec{F}$ μ_0 $\overline{0}$ \mathcal{C} $2\vec{F}$ = \vec{E} = \vec{E} $\vec{M} = \chi_m \vec{H}$ $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $m\Omega$ and $m\Omega$ and $m\Omega$ and $m\Omega$ $\vec{B} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$ $C^{\mathcal{U}}$ $\hat{n} \cdot (\vec{R}_e - \vec{R}_e)$ $1 - D_2$) = 0 P_0 $\nabla \cdot \vec{B} = 0$ $\Psi = LI$ $\hat{n} \times (\vec{H}_1 - \vec{H}_2) = \vec{J}_s$ $\varepsilon = IR$ $\hat{n} \times (\vec{M}_1 - \vec{M}_2) = \vec{J}_{b.s}$

Units

Charge $Q: C$ Current *I*: A Electric field strength \vec{E} : N/C or V/m Electric flux density \vec{D} : C/m² Polarization field \vec{P} : C/m² Electric potential $V: V$ Capacitance $C: F$ Magnetic flux density \vec{B} : T or Wb/m² Magnetic field strength \vec{H} : A/m Magnetic flux Ψ : Wb Electromotive force ε : V Inductance $L: H$

Electric permittivity ϵ : F/m Magnetic permeability μ : H/m Conductivity σ : Si/m

Charge density ρ : C/m³ Surface charge density $\rho_{\rm s}$: C/m 2 $\qquad\qquad\leftarrow$ Current density \vec{f} : A/m²

Intrinsic impedance η : Ohm Wave number β : rad/m

Office Hours

Any questions?

