

October 15th, 2024

Last week: Electrodynamics

D and E	B and H
$ \oint_{S} \vec{D} \cdot d\vec{S} = \iiint_{V} \rho dV $ $ \nabla \cdot \vec{D} = \rho $	$\iint_{S} \vec{B} \cdot d\vec{S} = 0$ $\nabla \cdot \vec{B} = 0$
$\oint_{C} \vec{E} \cdot d\vec{\ell} = -\frac{\partial}{\partial t} \iint_{S} \vec{B} \cdot d\vec{S}$ $\nabla \times \vec{E} = -\frac{\partial}{\partial t} \vec{B}$	$\oint_C \vec{H} \cdot d\vec{\ell} = \iint_S \vec{J} \cdot d\vec{S}$ $\nabla \times \vec{H} = \vec{J}$

Maxwell's Correction

 $\nabla \times \vec{H} = \vec{J}$

Bound Current & Magnetization Field

Just like we had bound charges, we also have bound currents.

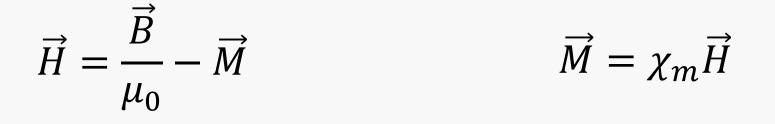
- Created by electrons 'orbiting' a nucleus
- Created by intrinsic spin

Just like we had polarization field, we also have magnetization field. Magnetization field is divergence-free, much like B-fields.

Just like we had electric susceptibility χ_e , we have magnetic susceptibility χ_m .

What do you need to know?

Bound Current & Magnetization Field $\vec{J}_b = \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$



$$\vec{B} = \mu_0 (1 + \chi_m) \vec{H} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$$

Material Characterizations

1. Diamagnetic: $\chi_m < 0$. No permanent magnetic field. Any applied \vec{B} induces a small \vec{M} pointing against \vec{B} .

2. Paramagnetic: $\chi_m > 0$. Any applied \vec{B} induces a small \vec{M} that reinforces \vec{B} .

3. Ferromagnetic: $\chi_m \gg 1$. Permanent magnets

Maxwell's Equations

Free space

Material Media

Maxwell's Equations

Everywhere and always

Boundary Conditions

$$\hat{n} \cdot \left(\vec{D}_1 - \vec{D}_2 \right) = \rho_s$$
$$\hat{n} \cdot \left(\vec{B}_1 - \vec{B}_2 \right) = 0$$
$$\hat{n} \cdot \left(\vec{P}_1 - \vec{P}_2 \right) = -\rho_{b,s}$$

 $\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$ $\hat{n} \times \left(\vec{H}_1 - \vec{H}_2\right) = \vec{J}_s$ $\hat{n} \times \left(\vec{M}_1 - \vec{M}_2\right) = \vec{J}_{b,s}$

Problem 1

Maxwell's Wave Equation

Assumptions: $\rho = 0, \sigma = 0, \vec{J} = 0$, i.e. region is a source-free perfect dielectric.

Wave equation: $\nabla^2 \vec{E} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$. Solutions are 'EM waves.'

General form of cosinusoidal solution:

Wave Formulae

$$v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu\epsilon}}$$

$$\beta = \omega \sqrt{\mu \epsilon}$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

$$\eta = \frac{\sqrt{\mu}}{\sqrt{\epsilon}}$$

Problem 2: Two imposters among us...

Which two of the following are not a valid solution to the wave equation?

- 1. $\vec{E} = 5\cos(3t + 4z)\hat{x}$
- $2. \quad \vec{E} = 5\cos(3t + 4x)\,\hat{x}$
- 3. $\vec{E} = 3\hat{x}$
- $4. \quad \vec{E} = \sin(5t + 4r)\,\hat{y}$
- 5. $\vec{E} = \sin(5t + 3z)\,\hat{y}$
- 6. $\vec{E} = \sin(5t 3x)\hat{z} + \sin(4t 3y)\hat{x}$

TEM Waves

TEM = Transverse electromagnetic.

- \vec{E} and \vec{H} point **perpendicular** to the direction of travel.
- Why can't they point in the direction of travel?

Midterm 1 equations, in one place

 $\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r}$ $\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B})$ $\vec{E} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r}$

 $\hat{n} \cdot \left(\vec{D}_1 - \vec{D}_2\right) = \rho_s$ $\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$ $\hat{n} \cdot \left(\vec{P}_1 - \vec{P}_2\right) = -\rho_{b,s}$

$$\begin{split} \epsilon & \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}} \\ & \oiint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}} \\ & \iiint \rho dV = Q_{\text{enclosed}} \\ & \oiint \vec{B} \cdot d\vec{S} = 0 \\ & I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t} \end{split}$$

$$\nabla \times \vec{E} = 0$$

$$\vec{E} = -\nabla V$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

 $\epsilon = \epsilon_0 (1 + \chi_e)$ $\vec{P} = \epsilon_0 \chi_e \vec{E} \qquad \nabla \cdot$ $\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E} \qquad \nabla \cdot$ $\vec{J} = \sigma \vec{E} \qquad -\nabla$ $\rho_b = -\nabla \cdot \vec{P} \qquad -\nabla$ $\nabla \cdot \epsilon_0 \vec{E} = \rho_f + \rho_b$

$$\begin{aligned} \nabla \cdot \vec{D} &= \rho \\ \nabla \cdot \vec{J} &= -\frac{\partial \rho}{\partial t} \\ -\nabla^2 V &= \frac{\rho}{\epsilon} \end{aligned}$$

Midterm 2 equations, in one place

 $\Psi = \iint_{S} \vec{B} \cdot d\vec{S} \qquad v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu\epsilon}} \qquad Q = CV$ $\vec{B} = \frac{\mu I}{2\pi r} \hat{\phi}$ $d\vec{B} = \frac{\mu I d\vec{\ell} \times \hat{r}}{4\pi r^2}$ $-\frac{d}{dt}\iint \vec{B} \cdot d\vec{S} = \oint \vec{E} \cdot d\vec{l} \qquad \omega = 2\pi f = \frac{2\pi}{T}$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \eta = \frac{\sqrt{\mu}}{\sqrt{\epsilon}} \qquad \vec{J}_b = \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$ $\oint_C \vec{H} \cdot d\vec{\ell} = \iint_S \vec{J} \cdot d\vec{S}$ $\beta = \omega \sqrt{\mu \epsilon} \qquad \qquad \vec{H} = \frac{\vec{B}}{-} - \vec{M}$ $\oint \vec{B} \cdot d\vec{\ell} = \mu I_{\text{encl}}$ $\oint \vec{E} \cdot d\vec{l} = \varepsilon$ $\nabla^2 \vec{E} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$ $\vec{M} = \chi_m \vec{H}$ $\varepsilon = \frac{W}{a} = \oint_{c} \frac{\vec{F}}{a} \cdot d\vec{l}$ $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $\vec{B} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$ $\hat{n} \cdot \left(\vec{B}_1 - \vec{B}_2 \right) = 0$ $\nabla \cdot \vec{B} = 0$ $\Psi = LI$ $\hat{n} \times (\vec{H}_1 - \vec{H}_2) = \vec{J}_s$ $\varepsilon = IR$ $\hat{n} \times \left(\vec{M}_1 - \vec{M}_2 \right) = \vec{J}_{b.s}$

Units

Charge Q: C Current I: A Electric field strength \vec{E} : N/C or V/m Electric flux density \vec{D} : C/m² Polarization field \vec{P} : C/m² Electric potential V: V Capacitance C: F Magnetic flux density \vec{B} : T or Wb/m² Magnetic field strength \vec{H} : A/m Magnetic flux Ψ : Wb Electromotive force ε : V Inductance L: H Electric permittivity ϵ : F/m Magnetic permeability μ : H/m Conductivity σ : Si/m

Charge density ρ : C/m³ Surface charge density ρ_s : C/m² Current density \vec{J} : A/m²

Intrinsic impedance η : Ohm Wave number β : rad/m

Office Hours

Any questions?

