

October 8th, 2024

Last week: Statics	
Electrostatics	Magnetostatics
$\oint\!$	$\oint \!$
$\nabla \cdot \vec{D} = \rho$	$\nabla \cdot \vec{B} = 0$
$\oint_C \vec{E} \cdot d\vec{\ell} = 0$ $\nabla \times \vec{E} = 0$	$\oint_C \vec{H} \cdot d\vec{\ell} = \iiint_S \vec{J} \cdot d\vec{S}$ $\nabla \times \vec{H} = \vec{J}$

This week: Dynamics!

$$-\frac{d\Psi}{dt} = -\frac{d}{dt} \iint_{S} \vec{B} \cdot d\vec{S} = \oint_{C} \vec{E} \cdot d\vec{l} = \varepsilon$$

 Ψ is **magnetic flux** (notice that we integrated magnetic flux density \vec{B} [Wb/m²] to get magnetic flux). Units: [Wb]

In electrodynamics, \vec{E} is no longer curl-free/pathindependent/conservative; integration over a closed loop yields a nonzero number.

 ε is **electromotive force** (or emf). Units: [V]

Electromotive 'force'

$$-\frac{d\Psi}{dt} = -\frac{d}{dt} \iint_{S} \vec{B} \cdot d\vec{S} = \oint_{C} \vec{E} \cdot d\vec{l} = \varepsilon$$

 ε is **electromotive force** (or emf). Units: [V] It is not a force.

It is the electromagnetic work done to move a unit electric charge once around the closed loop.

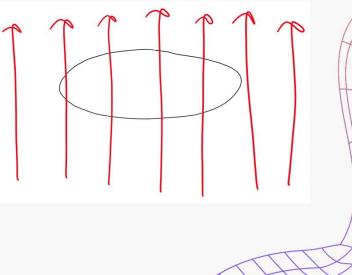
$$\varepsilon = \frac{W}{q} = \oint_C \frac{\vec{F}}{q} \cdot d\vec{l}$$
 $\varepsilon = IR$

Faraday's Law

$$\oint_C \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \iint_S \vec{B} \cdot d\vec{S}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Problem 1


$$-\frac{d\Psi}{dt} = -\frac{d}{dt} \iint_{S} \vec{B} \cdot d\vec{S} = \oint_{C} \vec{E} \cdot d\vec{l} = \varepsilon$$

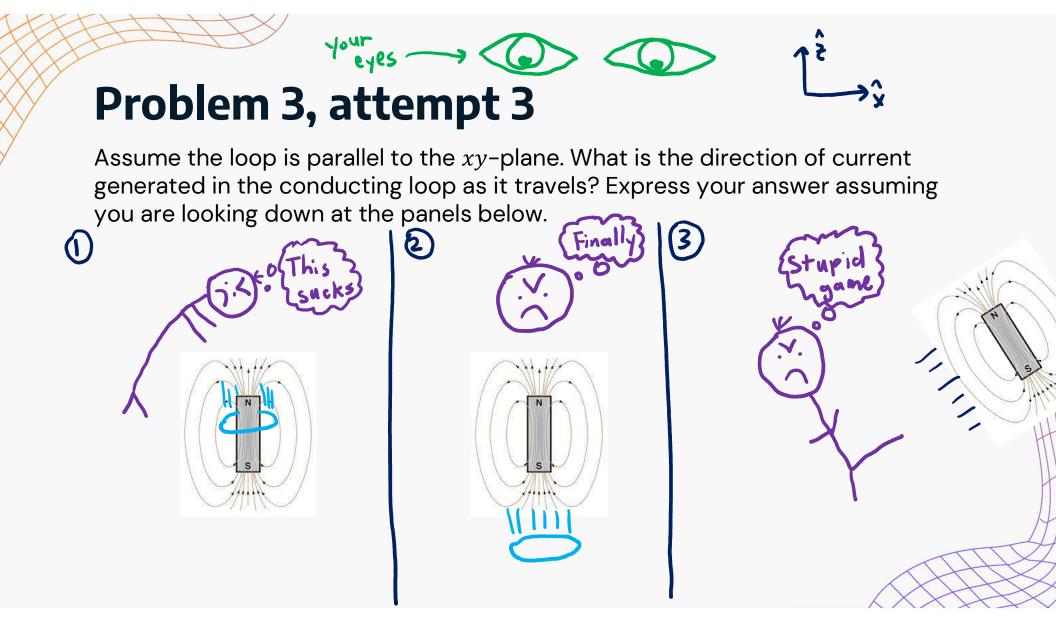
Express the unit [Wb] using [V] and other SI quantities.

Problem 2

A circular loop is immersed in a uniform magnetic field such that the plane of the loop is perpendicular to the direction of \vec{B} . Which of the following will create a nonzero emf in the loop?

- 1. The coil is rotated about an axis perpendicular to \vec{B} with angular frequency ω .
- 2. The coil is moved upwards with velocity v.
- 3. The coil is moved to the left with velocity v.
- 4. The coil is deformed into a square.
- 5. The \vec{B} field intensity is increased.

Problem 3, attempt 1


your eyes -

Assume the magnetic field at my location is negligible and the loop is parallel to the xy-plane. What is the direction of current generated in the conducting loop as it travels? Express your answer assuming you are looking down at the panels below.

$f_{eyes} \rightarrow \bigcirc \qquad \bigcirc \qquad f_{eyes} \rightarrow \frown \qquad f_{eyes} \rightarrow f_{eyes} \rightarrow \bigcirc \qquad f_{e$

2

Assume the loop is parallel to the xy-plane. What is the direction of current generated in the conducting loop as it travels? Express your answer assuming you are looking down at the panels below.

Problem 4

Consider two infinite line currents $I_x \hat{x}$ [A] and $I_y \hat{y}$ [A] along the x and y axis and crossing at the origin but not interfering with each other.

- 1. Find the \vec{B} field in the region x > 0, y > 0 on the xy-plane.
- 2. Find the emf generated in a square wire loop (sidelength ℓ) moving with a velocity $\vec{v} = v_x \hat{x} + v_y \hat{y}$ [m/s] in the region x > 0, y > 0 on the xy-plane. Assume the wire loop is very small such that \vec{B} can be assumed to be uniform across the loop.

Problem 4: Blank slide

Consider two infinite line currents $I_x \hat{x}$ [A] and $I_y \hat{y}$ [A] along the x and y axis and crossing at the origin but not interfering with each other.

- 1. Find the \vec{B} field in the region x > 0, y > 0 on the xy-plane.
- 2. Find the emf generated in a square wire loop (sidelength ℓ) moving with a velocity $\vec{v} = v_x \hat{x} + v_y \hat{y}$ [m/s] in the region x > 0, y > 0 on the xy-plane. Assume the wire loop is very small such that \vec{B} can be assumed to be uniform across the loop.

Problem 4: Blank slide

Consider two infinite line currents $I_x \hat{x}$ [A] and $I_y \hat{y}$ [A] along the x and y axis and crossing at the origin but not interfering with each other.

- 1. Find the \vec{B} field in the region x > 0, y > 0 on the xy-plane.
- 2. Find the emf generated in a square wire loop (sidelength ℓ) moving with a velocity $\vec{v} = v_x \hat{x} + v_y \hat{y}$ [m/s] in the region x > 0, y > 0 on the xy-plane. Assume the wire loop is very small such that \vec{B} can be assumed to be uniform across the loop.

Inductance

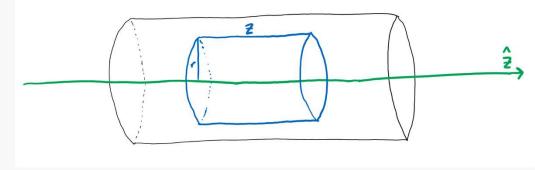
Inductance: the tendency of an electrical conductor to oppose a change in electric current flowing through it.

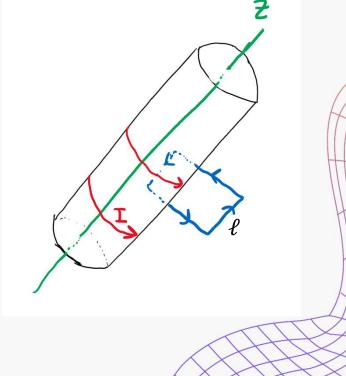
Inductance exists only in conductors!

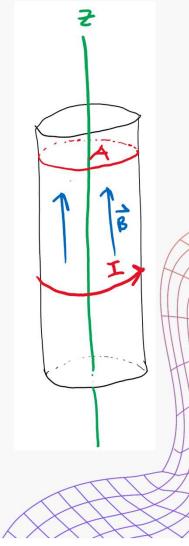
 $\Psi = LI$

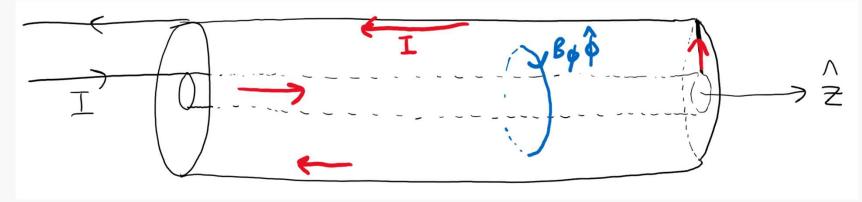
Self inductance: change in current flowing through a conductor induces an emf in the conductor itself.

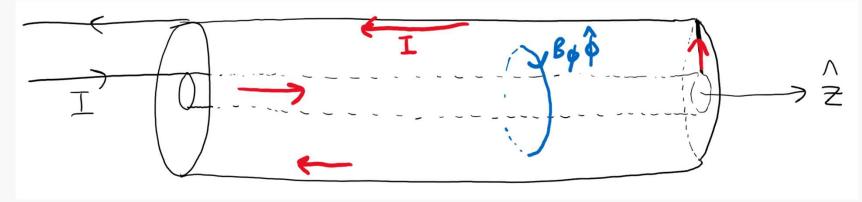
Mutual inductance: change in current flowing through a conductor induces an emf in any nearby conductors.

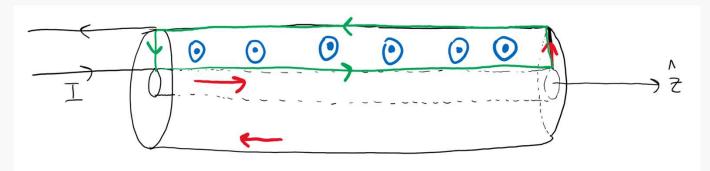

Q = CV


Pick your poison: solenoid vs. coax


Choose one:


- 1. Inductance of a solenoid.
- 2. Inductance of a shorted coaxial cable.
- 3. None of the above.





Problem 7

$\Psi = LI$

Express the unit [H] using the SI quantities [kg], [m], [s], and [C].

- 1. Express the angle between the plane of the current loop at the xy-plane as a function of t.
- 2. Suppose $d\vec{S}$ points in the $+\hat{z}$ direction at t = 0. Find the direction of $d\vec{S}$ as a function of t.
- 3. Suppose $\vec{B} = 3\hat{z} + 6\hat{y}$ [Wb/m²]. Find $\Psi(t)$.

- 1. Express the angle between the plane of the current loop at the xy-plane as a function of t.
- 2. Suppose $d\vec{S}$ points in the $+\hat{z}$ direction at t = 0. Find the direction of $d\vec{S}$ as a function of t.
- 3. Suppose $\vec{B} = 3\hat{z} + 6\hat{y}$ [Wb/m²]. Find $\Psi(t)$.

- 1. Express the angle between the plane of the current loop at the xy-plane as a function of t.
- 2. Suppose $d\vec{S}$ points in the $+\hat{z}$ direction at t = 0. Find the direction of $d\vec{S}$ as a function of t.
- 3. Suppose $\vec{B} = 3\hat{z} + 6\hat{y}$ [Wb/m²]. Find $\Psi(t)$.

- 1. Express the angle between the plane of the current loop at the xy-plane as a function of t.
- 2. Suppose $d\vec{S}$ points in the $+\hat{z}$ direction at t = 0. Find the direction of $d\vec{S}$ as a function of t.
- 3. Suppose $\vec{B} = 3\hat{z} + 6\hat{y}$ [Wb/m²]. Find $\Psi(t)$.

Midterm 1 equations, in one place

 $\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r}$ $\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B})$ $\vec{E} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r}$

 $\hat{n} \cdot \left(\vec{D}_1 - \vec{D}_2\right) = \rho_s$ $\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$ $\hat{n} \cdot \left(\vec{P}_1 - \vec{P}_2\right) = -\rho_{b,s}$

$$\begin{split} \epsilon & \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}} \\ & \oiint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}} \\ & \iiint \rho dV = Q_{\text{enclosed}} \\ & \oiint \vec{B} \cdot d\vec{S} = 0 \\ & I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t} \end{split}$$

$$\nabla \times \vec{E} = 0$$

$$\vec{E} = -\nabla V$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

 $\epsilon = \epsilon_0 (1 + \chi_e)$ $\vec{P} = \epsilon_0 \chi_e \vec{E} \qquad \nabla \cdot$ $\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E} \qquad \nabla \cdot$ $\vec{J} = \sigma \vec{E} \qquad -\nabla$ $\rho_b = -\nabla \cdot \vec{P} \qquad -\nabla$ $\nabla \cdot \epsilon_0 \vec{E} = \rho_f + \rho_b$

$$\begin{aligned} \nabla \cdot \vec{D} &= \rho \\ \nabla \cdot \vec{J} &= -\frac{\partial \rho}{\partial t} \\ -\nabla^2 V &= \frac{\rho}{\epsilon} \end{aligned}$$

Midterm 2 equations, in one place

 $\vec{B} = \frac{\mu I}{2\pi r} \hat{\phi}$ $\Psi = \iint \vec{B} \cdot d\vec{S}$ $d\vec{B} = \frac{\mu I d\vec{\ell} \times \hat{r}}{4\pi r^2} \qquad -\frac{d}{dt} \iint_{S} \vec{B} \cdot d\vec{S} = \oint_{C} \vec{E} \cdot d\vec{l}$ $\oint_C \vec{H} \cdot d\vec{\ell} = \iint_S \vec{J} \cdot d\vec{S}$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\oint_C \vec{B} \cdot d\vec{\ell} = \mu I_{\text{encl}}$ $\oint \vec{E} \cdot d\vec{l} = \varepsilon$ $\nabla \times \vec{H} = \vec{J}$ $\varepsilon = \frac{W}{q} = \oint_C \frac{\vec{F}}{q} \cdot d\vec{l}$ $\nabla \cdot \vec{B} = 0$ $\Psi = LI$ $\varepsilon = IR$

Q = CV $G = \frac{\sigma}{\epsilon}C \quad R = \frac{1}{G}$

Units

Charge Q: C Current I: A Electric field strength \vec{E} : N/C or V/m Electric flux density \vec{D} : C/m² Polarization field \vec{P} : C/m² Electric potential V: V Capacitance C: F Magnetic flux density \vec{B} : T or Wb/m² Magnetic field strength \vec{H} : A/m Magnetic flux Ψ : Wb Electromotive force ε : V Inductance L: H Electric permittivity ϵ : F/m Magnetic permeability μ : H/m Conductivity σ : Si/m

Charge density ρ : C/m³ Surface charge density ρ_s : C/m² Current density \vec{J} : A/m²

Office Hours

Any questions?

