

September 24th, 2024

Share any thoughts on anything, including the exam!

Agenda

- 1. Exam 1
- 2. Quick content review
- 3. One example problem
- 4. Office Hours

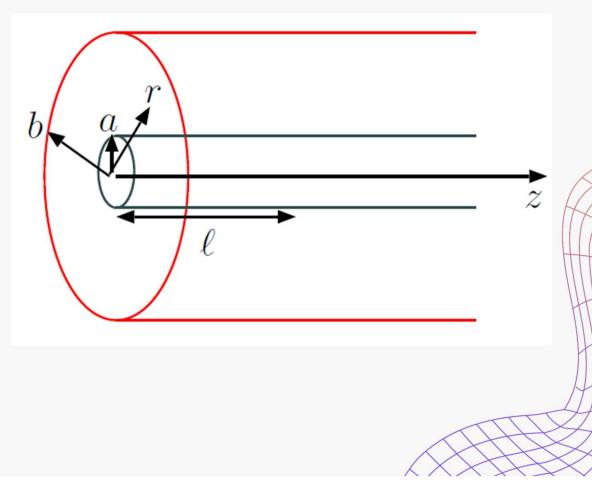
Bound charges

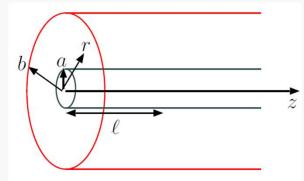
Poisson's Equation

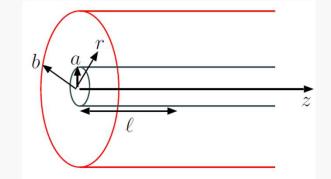
Laplace's Equation

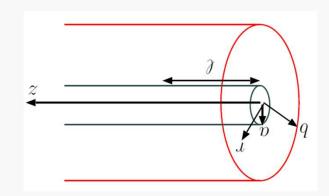
Capacitance

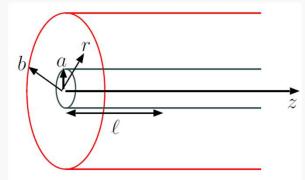
Capacitance: the ability of something to collect and store energy in the form of electrical charge.

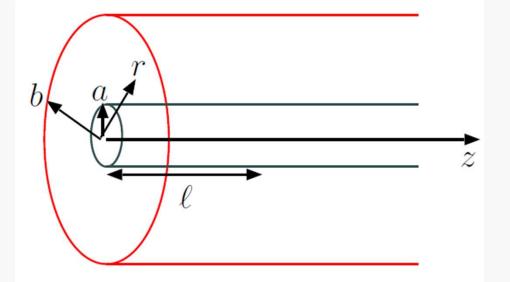

This energy is stored as opposite electric charges being held apart (and thus creating a difference in electric potential, aka a voltage drop).

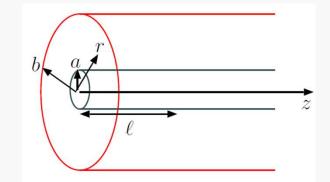

$$Q = CV$$
 $G = \frac{\sigma}{\epsilon}C$ $R = \frac{1}{G}$

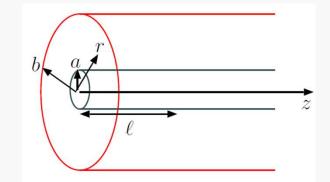

Problem 1

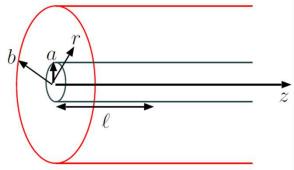

The central cylindrical volume with cross-sectional radius *a* is a conductor.

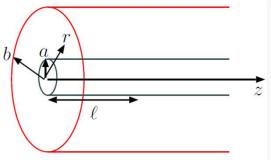

The pipe (drawn in red) is also a conductor and is grounded. A dielectric with permittivity $\epsilon = 4\epsilon_0$ fills the space in between.

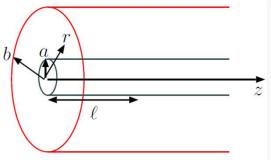


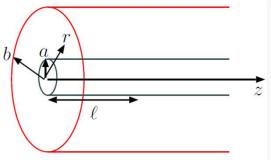


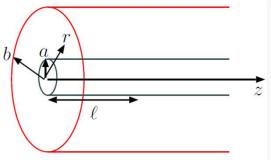


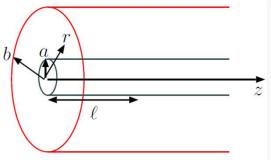


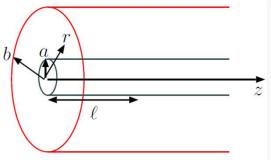







Problem 1 Extended





Week 4 equations, in one place $\epsilon \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}}$ $\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r}$ $\nabla \times \vec{E} = 0$ $\oint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}}$ $\vec{E} = -\nabla V$ $\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B})$ $\iiint \rho dV = Q_{\text{enclosed}}$ $\oint \vec{E} \cdot d\vec{l} = 0$ $\oint \vec{B} \cdot d\vec{S} = 0$ $\vec{E} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r}$ $V_{ab} = V(b) - V(a) = -\int^{b} \vec{E} \cdot d\vec{l}$ $I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t}$ $\hat{n} \cdot \left(\vec{D}_1 - \vec{D}_2 \right) = \rho_s$ $\epsilon = \epsilon_0 (1 + \chi_e)$ $\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$ $\oint \vec{D} \cdot d\vec{S} = \iiint \nabla \cdot \vec{D} dV$ $\vec{P} = \epsilon_0 \chi_e \vec{E}$ $\nabla \cdot \vec{D} = \rho$ $\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$ $-\nabla^2 V = \frac{\rho}{c}$ $\hat{n} \cdot \left(\vec{P}_1 - \vec{P}_2\right) = -\rho_{b,s}$ $\oint \vec{E} \cdot d\vec{l} = \iint \left(\nabla \times \vec{E} \right) \cdot d\vec{S}$ $\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E}$ $\int_{a}^{b} \nabla V \cdot d\vec{l} = V(b) - V(a)$ $\vec{I} = \sigma \vec{E}$ Q = CV $G = \frac{\sigma}{\epsilon} C \qquad R = \frac{1}{G} \qquad \rho_b = -\nabla \cdot \vec{P} \\ \nabla \cdot \epsilon_0 \vec{E} = \rho_f + \rho_b$

Units

Charge Q: C Electric field \vec{E} : N/C or V/m Displacement field \vec{D} : C/m² Polarization field \vec{P} : C/m² Electric potential V: V Capacitance C: F Magnetic field \vec{B} : T or Wb/m² Charge density ρ : C/m³ Surface charge density ρ_s : C/m² Current density \vec{J} : A/m² Electric permittivity ϵ : F/m Magnetic permeability μ : H/m Conductivity σ : Si/m

Office Hours

Any questions?

Share any thoughts on anything, including the exam!

