

September 10th, 2024

Divergence & Divergence Theorem

Divergence = How much the field is DIVERGING at a certain point.

- Notation: $\nabla \cdot \vec{D}$
- Input: Vector field
- Output: Scalar field

Divergence Theorem: $\oiint \vec{D} \cdot d\vec{S} = \iiint \nabla \cdot \vec{D} dV$

Curl & Stoke's Theorem

Curl = How much the field is CURLING around a certain point.

- Notation: $\nabla \times \vec{E}$
- Input: Vector field
- Output: Vector field, with direction indicating how the field right-hand curls around.

Stoke's Theorem: $\oint \vec{E} \cdot d\vec{l} = \iint (\nabla \times \vec{E}) \cdot d\vec{S}$

Gradient & Gradient Theorem

Gradient = How much the scalar function changes (or its GRADE).

- **Notation:** $\overline{V}V$
- Input: Scalar field
- Output: Vector field, with direction indicating steepest uphill.

Fundamental theorem of calculus: $\int_a^b f'(t) \cdot dt = f(b) - f(a)$

Similarly: Gradient theorem: $\int_a^b \nabla V \cdot d\vec{l} = V(b) - V(a)$

Laplacian

Laplacian (scalar) = How much the scalar function

Laplacian (scalar) = How much the rate of change of the scalar function varies (aka stress). Laplacian (scalar) = How much the
function varies (aka stress).
• Notation: $\nabla^2 V = \nabla \cdot \nabla V$
• Input: Scalar field
• Output: Scalar field

- Notation: $\nabla^2 V = \nabla \cdot \nabla V$
- Input: Scalar field
-

Find the divergence and curl of $\vec{E} = xy\hat{x} + yz\hat{y} + xz\hat{z}$.

Find the gradient and Laplacian of $f = x^2 + y^2 + z^2$.

Suppose $\vec{E} = \frac{x^2}{2} \hat{y} - x\hat{z}$ V/m². What is the circulation for the closed square loop picture below?

Problem 3: Blank slide

Suppose $\vec{E} = \frac{x^2}{2} \hat{y} - x\hat{z}$ V/m². What is the circulation for the closed square loop picture below?

Problem 3: Blank slide

Suppose $\vec{E} = \frac{x^2}{2} \hat{y} - x\hat{z}$ V/m². What is the circulation for the closed square loop picture below?

Fluxes

Recall electric and current flux equations from last time.

$\oint \vec{D} \cdot d\vec{S} = \iiint \rho_{\text{enclosed}} dV \qquad \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial}{\partial t} \iiint \rho_{\text{enclosed}} dV$

Fluxes

$\oint \vec{D} \cdot d\vec{S} = \iiint \rho_{enclosed} dV \qquad \oint \vec{J} \cdot d\vec{S} = -\frac{\partial}{\partial t} \iiint \rho_{enclosed} dV$

A point charge of 4C sits at the origin in free space. Find the divergence of the electric field.

Conservative Fields

The following are equivalent for vector field \vec{E} :

- $\nabla \times \vec{E} = 0$
- \cdot \vec{E} is conservative
- $\oint \vec{E} \cdot d\vec{l} = 0$
- $\int_{a}^{b} \vec{E} \cdot d\vec{l}$ is path-indepe $\int_a^b \vec{E} \cdot d\vec{l}$ is path-independent
- $\vec{E} = \nabla V$ for some scalar field V.

Electrostatic Potential

Work done by you to move a charge from a to b, causing change in electrostatic potential U :

$$
W = U(b) - U(a) = \int_{a}^{b} \vec{F}_{\text{applied}} \cdot d\vec{l}
$$

$$
= -\int_{a}^{b} \vec{F}_{E} \cdot d\vec{l} = -\int_{a}^{b} q\vec{E} \cdot d\vec{l}
$$

Volts = work per unit charge (take $q = 1$). U/q = electrostatic potential energy per unit charge = $V =$ electrostatic potential:

$$
V_{ab} = V(b) - V(a) = -\int_a^b \vec{E} \cdot d\vec{l}
$$

V to E

$$
V_{ab} = V(b) - V(a) = -\int_a^b \vec{E} \cdot d\vec{l}
$$

Problem 5: Blank slide

Problem 5: Blank slide

Problem 5: Blank slide

Boundary Conditions

$$
\widehat{n}\cdot(\overrightarrow{D}_1-\overrightarrow{D}_2)=\rho_s
$$

$$
\widehat{n}\times\big(\vec{E}_1-\vec{E}_2\big)=0
$$

Suppose the yz -plane holds a surface charge density of $\rho_{\scriptscriptstyle \cal S} = 5$ C/m². The electric displacement field on the $-x$ side is given as $\vec{D} = \hat{x} + \hat{y} + \hat{y}$ \hat{z} . Find the electric displacement field on the $+x$ side using boundary conditions.

Problem 6: Blank slide

Suppose the yz -plane holds a surface charge density of $\rho_{\scriptscriptstyle \cal S} = 5$ C/m². The electric displacement field on the $-x$ side is given as $\vec{D} = \hat{x} + \hat{y} + \hat{y}$ \hat{z} . Find the electric displacement field on the $+x$ side using boundary conditions.

Jumping Between Quantities \overrightarrow{D} Q $\boldsymbol{\rho}$ \vec{E} \overline{V}

P.S.: Helmholtz Theorem

A vector field \vec{E} is specified completely by its divergence and curl.

Week 2 equations, in one place

 $1^{4}2$ ϵ_0 \downarrow $0^{\gamma-1}$ D 2' \vec{D} 2 α if \int_0^1 2 $\frac{1}{3}$

 $\hat{n} \cdot (\vec{D}_1 - \vec{D}_2) = \rho_s$ $\nabla \cdot \vec{D} = \rho$

 $\oint \vec{B} \cdot d\vec{S} = 0$ δ_{0} yy $E \cdot u_{0} = Q_{\text{enclosed}}$ \mathfrak{g}_1 \mathcal{L} \mathfrak{g}_2 \mathfrak{g}_3 \mathfrak{g}_4 \mathfrak{g}_5 \mathcal{L} \mathfrak{g}_5 \mathcal{L} $\$ 0^L $I = \oint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t}$ $\oint \vec{D} \cdot d\vec{S} = \iiint \nabla \cdot \vec{D} dV$ $\iiint \rho dV = Q_{\text{enclosed}}$ $\hat{n} \times (\vec{E}_1 - \vec{E}_2) = 0$
 $\nabla \cdot \vec{j} = -\frac{\partial \rho}{\partial t}$

$$
\nabla \times \vec{E} = 0
$$

\n
$$
\vec{E} = -\nabla V
$$

\n
$$
\oint \vec{E} \cdot d\vec{l} = 0
$$

\n
$$
V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}
$$

 $\oint \vec{E} \cdot d\vec{l} = \iint (\nabla \times \vec{E}) \cdot d\vec{S}$ \bm{b} \boldsymbol{a}

Office Hours

Any questions?

