

September 10th, 2024

Divergence & Divergence Theorem

Divergence = How much the field is DIVERGING at a certain point.

- Notation: $\nabla \cdot \vec{D}$
- Input: Vector field
- Output: Scalar field

Divergence Theorem: $\oiint \vec{D} \cdot d\vec{S} = \iiint \nabla \cdot \vec{D} dV$

Curl & Stoke's Theorem

Curl = How much the field is CURLING around a certain point.

- Notation: $\nabla \times \vec{E}$
- Input: Vector field
- Output: Vector field, with direction indicating how the field right-hand curls around.

Stoke's Theorem: $\oint \vec{E} \cdot d\vec{l} = \iint (\nabla \times \vec{E}) \cdot d\vec{S}$

Gradient & Gradient Theorem

Gradient = How much the scalar function changes (or its GRADE).

- Notation: ∇V
- Input: Scalar field
- Output: Vector field, with direction indicating steepest uphill.

Fundamental theorem of calculus: $\int_a^b f'(t) \cdot dt = f(b) - f(a)$

Similarly: Gradient theorem: $\int_{a}^{b} \nabla V \cdot d\vec{l} = V(b) - V(a)$

Laplacian

Laplacian (scalar) = How much the scalar function

Laplacian (scalar) = How much the rate of change of the scalar function varies (aka stress).

- Notation: $\nabla^2 V = \nabla \cdot \nabla V$
- Input: Scalar field
- Output: Scalar field

Find the divergence and curl of $\vec{E} = xy\hat{x} + yz\hat{y} + xz\hat{z}$.

Find the gradient and Laplacian of $f = x^2 + y^2 + z^2$.

Suppose $\vec{E} = \frac{x^2}{2}\hat{y} - x\hat{z}$ V/m². What is the circulation for the closed square loop picture below?

Problem 3: Blank slide

Suppose $\vec{E} = \frac{x^2}{2}\hat{y} - x\hat{z}$ V/m². What is the circulation for the closed square loop picture below?

Problem 3: Blank slide

Suppose $\vec{E} = \frac{x^2}{2}\hat{y} - x\hat{z}$ V/m². What is the circulation for the closed square loop picture below?

Fluxes

Recall electric and current flux equations from last time.

$\oint \vec{D} \cdot d\vec{S} = \iiint \rho_{\text{enclosed}} dV \quad \oint \vec{J} \cdot d\vec{S} = -\frac{\partial}{\partial t} \iiint \rho_{\text{enclosed}} dV$

Fluxes

$\oiint \vec{D} \cdot d\vec{S} = \iiint \rho_{\text{enclosed}} dV \quad \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial}{\partial t} \iiint \rho_{\text{enclosed}} dV$

A point charge of 4C sits at the origin in free space. Find the divergence of the electric field.

Conservative Fields

The following are equivalent for vector field \vec{E} :

- $\nabla \times \vec{E} = 0$
- \vec{E} is conservative
- $\oint \vec{E} \cdot d\vec{l} = 0$
- $\int_{a}^{b} \vec{E} \cdot d\vec{l}$ is path-independent $\vec{E} = \nabla V$ for some scalar field V.

Electrostatic Potential

Work done by you to move a charge from a to b, causing change in electrostatic potential *U*:

$$W = U(b) - U(a) = \int_{a}^{b} \vec{F}_{applied} \cdot d\vec{l}$$
$$= -\int_{a}^{b} \vec{F}_{E} \cdot d\vec{l} = -\int_{a}^{b} q\vec{E} \cdot d\vec{l}$$

Volts = work per unit charge (take q = 1). U/q = electrostatic potential energy per unit charge = V = electrostatic potential:

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

V to E

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

Problem 5: Blank slide

Problem 5: Blank slide

Problem 5: Blank slide

Boundary Conditions

$$\hat{n} \cdot \left(\vec{D}_1 - \vec{D}_2 \right) = \rho_s$$

$$\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$$

Suppose the yz-plane holds a surface charge density of $\rho_s = 5 \text{ C/m}^2$. The electric displacement field on the -x side is given as $\vec{D} = \hat{x} + \hat{y} + \hat{z}$. Find the electric displacement field on the +x side using boundary conditions.

Problem 6: Blank slide

Suppose the yz-plane holds a surface charge density of $\rho_s = 5 \text{ C/m}^2$. The electric displacement field on the -x side is given as $\vec{D} = \hat{x} + \hat{y} + \hat{z}$. Find the electric displacement field on the +x side using boundary conditions.

Jumping Between Quantities \overrightarrow{D} Q ρ \vec{E} V

P.S.: Helmholtz Theorem

A vector field \vec{E} is specified completely by its divergence and curl.

Week 2 equations, in one place

 $\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B}) \qquad \oiint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}}$ $\vec{E} = \frac{q_2}{4\pi\epsilon_0 r^2}\hat{r}$

 $\hat{n} \cdot \left(\vec{D}_1 - \vec{D}_2 \right) = \rho_s$ $\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$

 $\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r} \qquad \qquad \epsilon_0 \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}} \\ \vec{D} = \epsilon_0 \vec{E}$ $\iiint \rho dV = Q_{\text{enclosed}}$ $\oint \vec{B} \cdot d\vec{S} = 0$ $I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t}$ $\nabla \cdot \vec{D} = \rho$ $\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$

$$\nabla \times \vec{E} = 0$$

$$\vec{E} = -\nabla V$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

 $\oint \vec{D} \cdot d\vec{S} = \iiint \nabla \cdot \vec{D} dV$ $\oint \vec{E} \cdot d\vec{l} = \iint \left(\nabla \times \vec{E} \right) \cdot d\vec{S}$ $\int_{a}^{b} \nabla V \cdot d\vec{l} = V(b) - V(a)$

Office Hours

Any questions?

