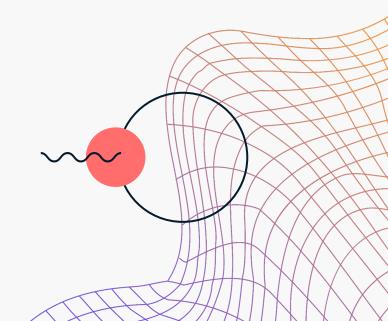
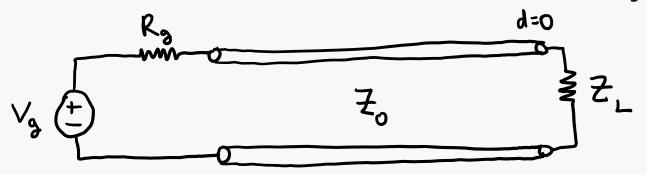


ECE329: Tutorial Session 12

November 19th, 2024

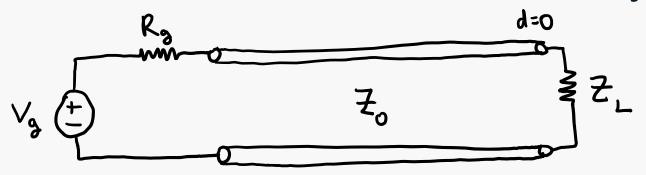


Basic TL: Time Domain, Not Steady State



Generator injection coefficient: $\tau_g = \frac{Z_0}{R_g + Z_0} \neq 1 + \Gamma_g$ Load reflection coefficient: $\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$ Generator reflection coefficient: $\Gamma_g = \frac{R_g - Z_0}{R_g + Z_0}$

Basic TL: Time Domain, Not Steady State



Special cases:

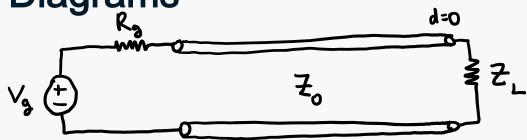
- What if $Z_L = 0$?
- What if $Z_L = \infty$?
- What if $Z_L = Z_0$?

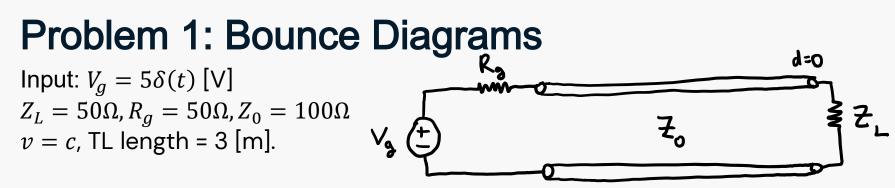
Problem 1: Bounce Diagrams Input: $V_g = 5\delta(t) [V]$ $Z_L = 50\Omega, R_g = 50\Omega, Z_0 = 100\Omega$ v = c, TL length = 3 [m].

Create a voltage bounce diagram for the first 45 nanoseconds. Create a current bounce diagram for the first 45 nanoseconds. Plot V(0.25m, t) for the first 45 nanoseconds.

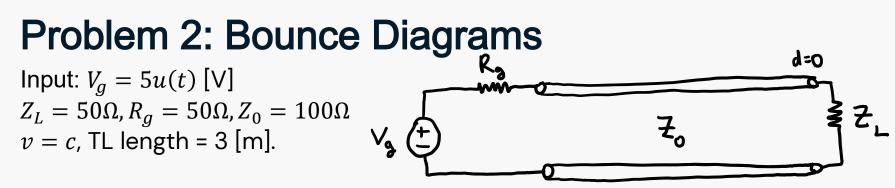
Problem 1: Bounce Diagrams

Input: $V_g = 5\delta(t)$ [V] $Z_L = 50\Omega, R_g = 50\Omega, Z_0 = 100\Omega$ v = c, TL length = 3 [m].





Plot V(0.25m, t) for the first 45 nanoseconds.

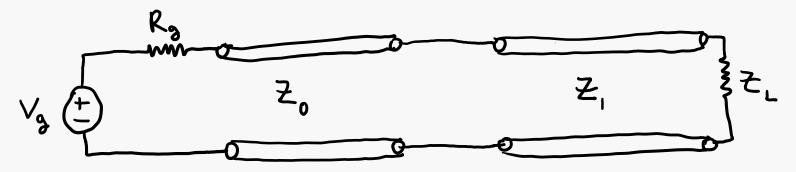


Plot V(0.25m, t) for the first 45 nanoseconds.

Problem 2: Bounce Diagrams Input: $V_g = 5u(t) [V]$ $Z_L = 50\Omega, R_g = 50\Omega, Z_0 = 100\Omega$ v = c, TL length = 3 [m].

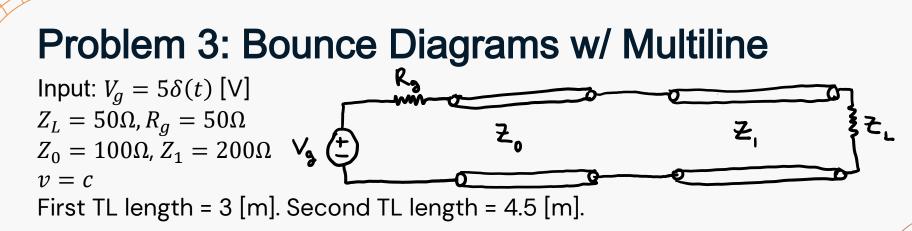
What is the steady-state voltage over the load? What is the steady state current through the load?

Multiline TL Circuits

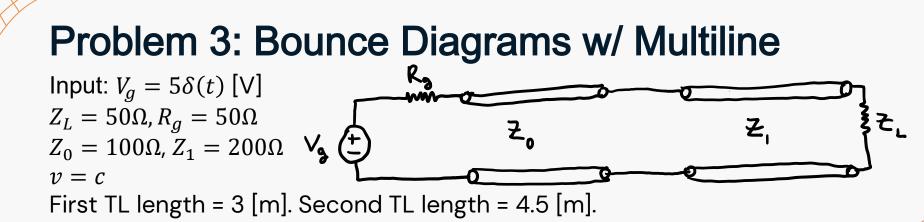


When we travel FROM line *j* TO line *k*:

$$\Gamma_{jk} = \frac{Z_k - Z_j}{Z_k + Z_j}$$
$$\tau_{jk} = 1 + \Gamma_{jk}$$

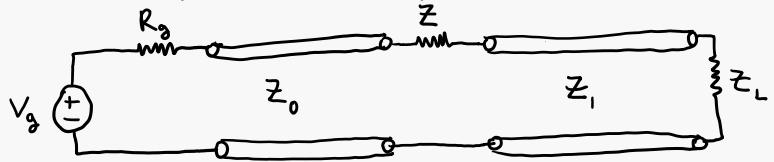


Create a voltage bounce diagram for the first 45 nanoseconds. Create a current bounce diagram for the first 45 nanoseconds.

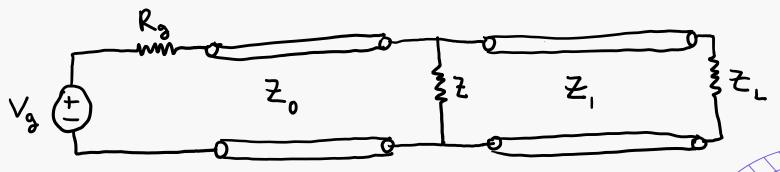


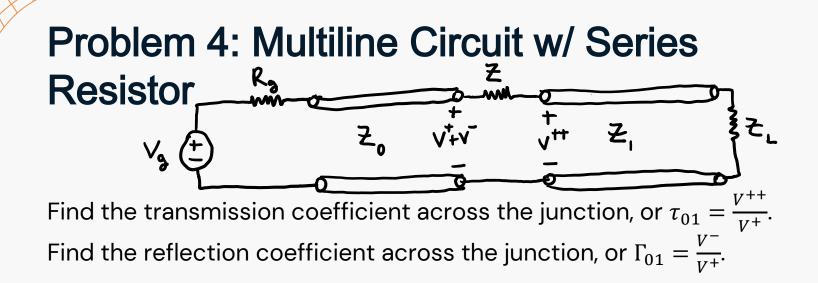
Multiline TL Circuits

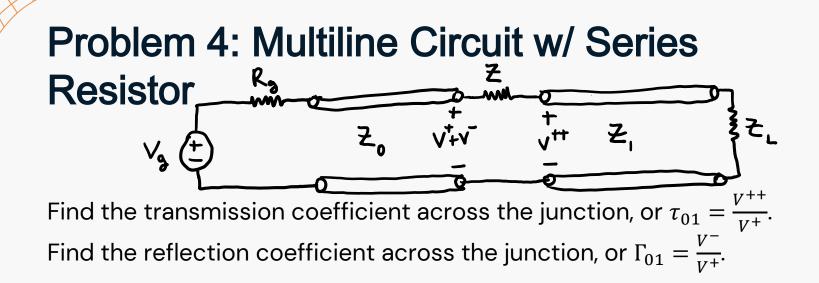
Series resistor (harder to deal with \otimes):

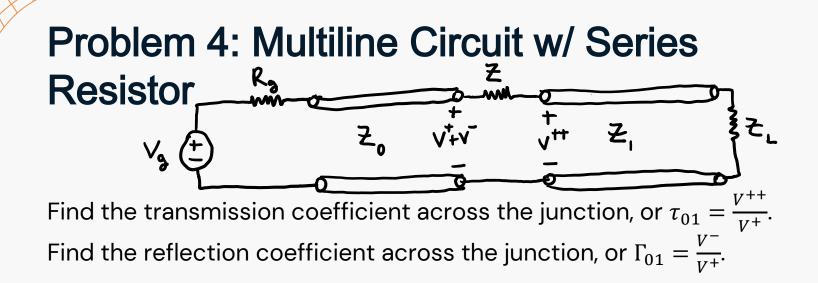


Parallel resistor (easier to deal with ©):









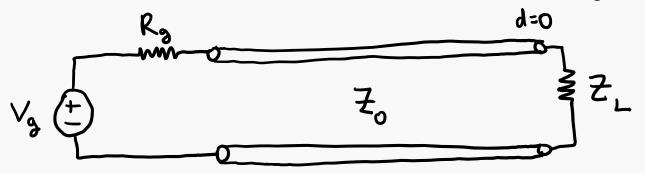
Bounce Diagrams: General Formulation

This is an LTI system! Input: $\delta(t)$ Output (at position d): V(t)Time to travel down the line: t_0 .

$$V(d,t) = \tau_g \sum_{n=0}^{\infty} \left(\Gamma_L \Gamma_g\right)^n \delta(t + \frac{d}{\nu} - nt_0) + \tau_g \Gamma_L \sum_{n=0}^{\infty} \left(\Gamma_L \Gamma_g\right)^n \delta(t - \frac{d}{\nu} - (n+1)t_0)$$

For any general input: convolve!

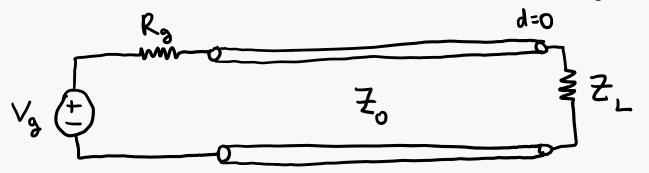
Basic TL: Phasor Domain, Steady State



On TL: Forward-going voltage wave + backward-going voltage wave

On TL: Forward-going current wave + backward-going current wave

Basic TL: Phasor Domain, Steady State

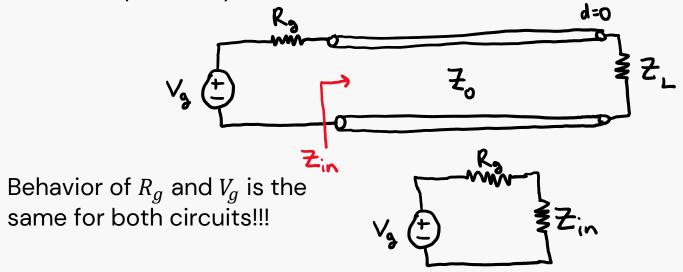


Impedance as a function of position?

Impedance Looking In: Steady State

The remainder of the semester deals with 'Input Impedance', i.e. Z(d) at some interesting position d.

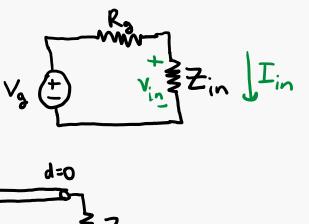
Input impedance: the impedance of the Thevenin resistor if the entire TL were replaced by this resistor.

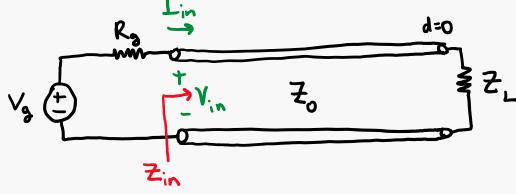


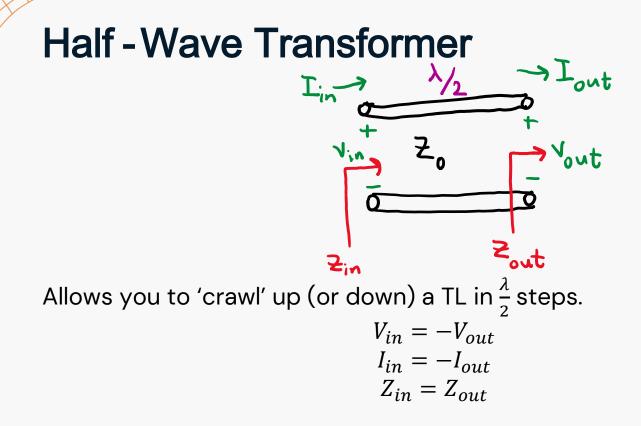
Impedance Looking In: Steady State

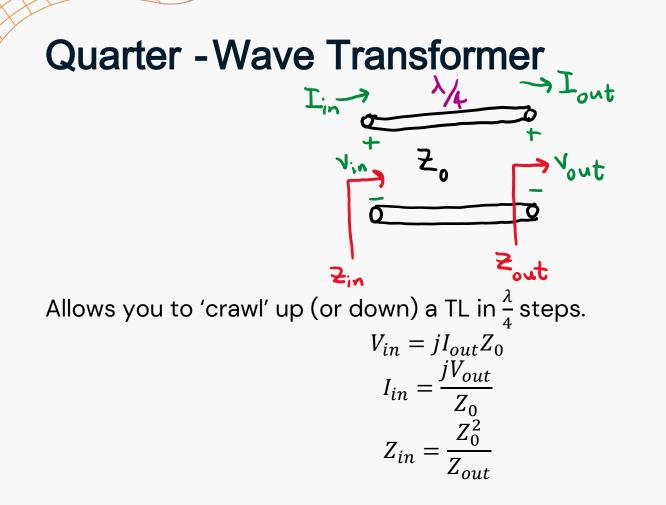
In Thevenin-equivalent circuit, impedance Z_{in} has some voltage V_{in} over it and some current I_{in} running through it.

This corresponds to voltage and current at the input end of the TL!

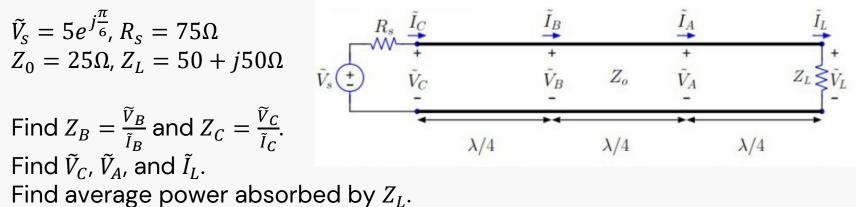




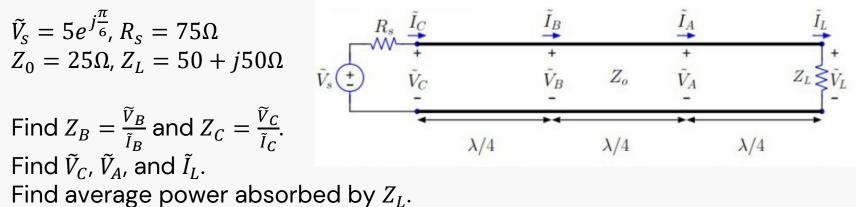




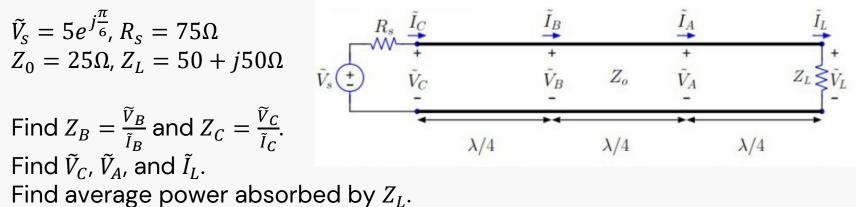
Problem 5: Transformers



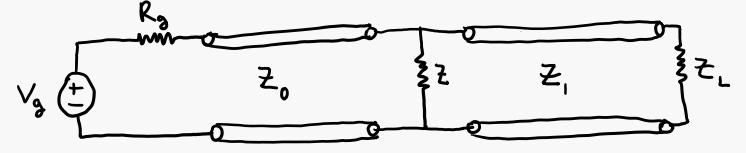
Problem 5: Transformers

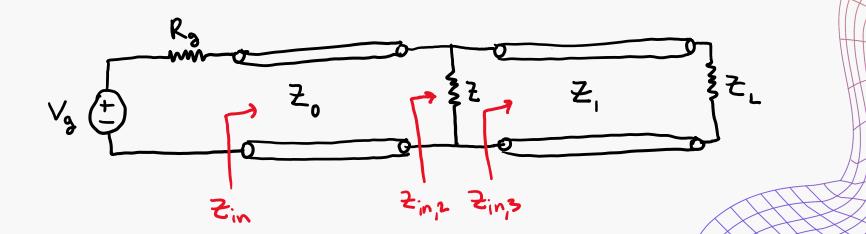


Problem 5: Transformers

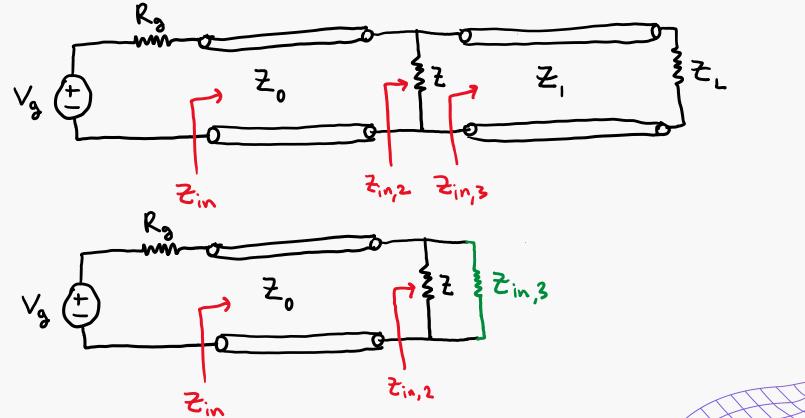


Multiline TL: Parallel Resistor (HW Hint)

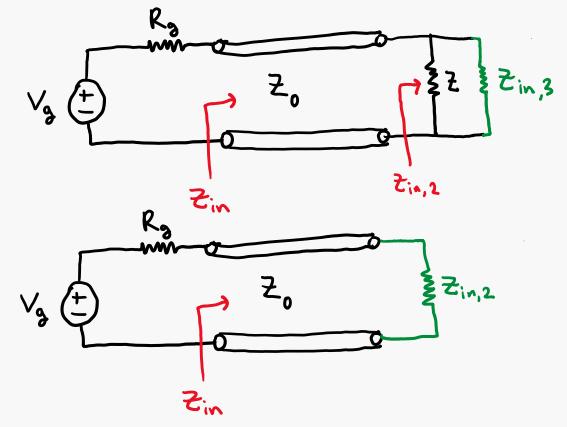




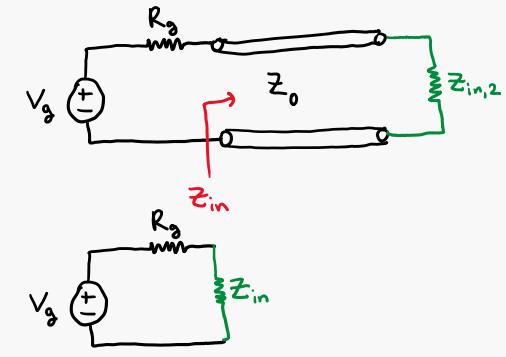
Multiline TL: Parallel Resistor



Multiline TL: Parallel Resistor



Multiline TL: Parallel Resistor



Midterm 1 equations, in one place

 $\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r}$ $\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B})$ $\vec{E} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r}$

$$\epsilon \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}}$$
$$\oiint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}}$$
$$\iiint \rho dV = Q_{\text{enclosed}}$$
$$\oiint \vec{B} \cdot d\vec{S} = 0$$
$$I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t}$$

$$\nabla \times E = 0$$

$$\vec{E} = -\nabla V$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

$$\hat{n} \cdot \left(\vec{D}_1 - \vec{D}_2\right) = \rho_s$$
$$\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$$
$$\hat{n} \cdot \left(\vec{P}_1 - \vec{P}_2\right) = -\rho_{b,s}$$

$$\begin{aligned} \epsilon &= \epsilon_0 (1 + \chi_e) \\ \vec{P} &= \epsilon_0 \chi_e \vec{E} \\ \vec{D} &= \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E} \\ \vec{J} &= \sigma \vec{E} \\ \rho_b &= -\nabla \cdot \vec{P} \\ \nabla \cdot \epsilon_0 \vec{E} &= \rho_f + \rho_b \end{aligned}$$

$$\begin{aligned} \nabla \cdot \vec{D} &= \rho \\ \nabla \cdot \vec{J} &= -\frac{\partial \rho}{\partial t} \\ -\nabla^2 V &= \frac{\rho}{\epsilon} \end{aligned}$$

Midterm 2 equations, in one place

$$\begin{split} \vec{B} &= \frac{\mu I}{2\pi r} \hat{\phi} & \Psi = \iint_{S} \vec{B} \cdot d\vec{S} & v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu\epsilon}} & Q = CV \\ d\vec{B} &= \frac{\mu I d\vec{\ell} \times \hat{r}}{4\pi r^{2}} & -\frac{d}{dt} \iint_{S} \vec{B} \cdot d\vec{S} = \oint_{c} \vec{E} \cdot d\vec{l} & \omega = 2\pi f = \frac{2\pi}{T} & G = \frac{\sigma}{\epsilon} C & R = \frac{1}{G} \\ \vec{\Phi}_{c} \vec{H} \cdot d\vec{\ell} &= \iint_{S} \vec{J} \cdot d\vec{S} & \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} & \eta = \frac{\sqrt{\mu}}{\sqrt{\epsilon}} & \vec{J}_{b} = \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M} \\ \vec{\Phi}_{c} \vec{B} \cdot d\vec{\ell} &= \mu I_{\text{encl}} & \oint_{c} \vec{E} \cdot d\vec{l} = \varepsilon & P^{2}\vec{E} = \mu\epsilon \frac{\partial^{2}\vec{E}}{\partial t^{2}} & \vec{M} = \chi_{m}\vec{H} \\ \nabla \times \vec{H} &= \vec{J} + \frac{\partial \vec{D}}{\partial t} & \varepsilon = \frac{W}{q} = \oint_{c} \frac{\vec{F}}{q} \cdot d\vec{l} & \vec{S} = \vec{E} \times \vec{H} & A\cos(\omega t - \beta x)\hat{z} \leftrightarrow Ae^{-j\beta x}\hat{z} \\ \nabla \cdot \vec{B} &= 0 & \Psi = LI & \vec{S} = \vec{E} \times \vec{H}^{*} & \hat{n} \cdot (\vec{B}_{1} - \vec{B}_{2}) = 0 \\ \frac{\partial}{\partial t} \left(\frac{1}{2}\epsilon\vec{E} \cdot \vec{E} + \frac{1}{2}\mu\vec{H} \cdot \vec{H}\right) + \nabla \cdot \vec{S} + \vec{J} \cdot \vec{E} = 0 & \hat{n} \times (\vec{M}_{1} - \vec{M}_{2}) = \vec{J}_{b,s} \end{split}$$

Midterm 3 equations, in one place

		Condition	β	α	$ \eta $	τ	$\lambda = \frac{2\pi}{\beta}$	$\delta = \frac{1}{\alpha}$	$ \prod_{\Gamma} - \frac{\eta_2 - \eta_1}{2\eta_2} \qquad 2\eta_2 \qquad 1 $	\sum
<u>Waves</u> :	Perfect dielectric	$\sigma = 0$	$\omega\sqrt{\epsilon\mu}$	0	$\sqrt{\frac{\mu}{\epsilon}}$	0	$\frac{2\pi}{\omega\sqrt{\epsilon\mu}}$	∞	$\tau = \frac{1}{\eta_2 + \eta_1}$ $\tau = \frac{1}{\eta_2 + \eta_1} = 1 + \frac{1}{\eta_2 + \eta_1} = 1 + \frac{1}{\eta_2 + \eta_1}$	
	Imperfect dielectric	$\frac{\sigma}{\omega\epsilon} \ll 1$	$\sim \omega \sqrt{\epsilon \mu}$	$\beta \frac{1}{2} \frac{\sigma}{\omega \epsilon} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$	$\sim \sqrt{rac{\mu}{\epsilon}}$	$\sim rac{\sigma}{2\omega\epsilon}$	$\sim \frac{2\pi}{\omega\sqrt{\epsilon\mu}}$	$\frac{2}{\sigma}\sqrt{\frac{\epsilon}{\mu}}$	$v = \frac{\omega}{\rho} = \lambda f$	
	Good conductor	$\frac{\sigma}{\omega\epsilon} \gg 1$	$\sim \sqrt{\pi f \mu \sigma}$	$\sim \sqrt{\pi f \mu \sigma}$	$\sqrt{\frac{\omega\mu}{\sigma}}$	45°	$\sim rac{2\pi}{\sqrt{\pi f\mu\sigma}}$	$\sim rac{1}{\sqrt{\pi f \mu \sigma}}$	$\nabla^2 \tilde{F} = (i \omega \mu) (\sigma + i \omega c) \tilde{F}$	
	Perfect conductor	$\sigma = \infty$	∞	∞	0	-	0	0	$\nabla^2 \tilde{E} = (j\omega\mu)(\sigma + j\omega\epsilon)\tilde{E}$	

$$\begin{split} \Gamma_L &= \frac{Z_L - Z_0}{Z_L + Z_0} \\ \tau_g &= \frac{Z_0}{R_g + Z_0} \\ \Gamma_{jk} &= \frac{Z_k - Z_j}{Z_k + Z_j} \\ \Gamma_g &= \frac{R_g - Z_0}{R_g + Z_0} \end{split}$$

<u>TLs</u>:

Half-wave:

$$V_{in} = -V_{out}$$

 $I_{in} = -I_{out}$
 $Z_{in} = Z_{out}$

Quarter-wave: $V_{in} = jI_{out}Z_{0}$ $I_{in} = \frac{jV_{out}}{Z_{0}}$ $Z_{in} = \frac{Z_{0}^{2}}{Z_{out}}$

Units

Charge Q: C Current I: A Electric field strength \vec{E} : N/C or V/m Electric flux density \vec{D} : C/m² Polarization field \vec{P} : C/m² Electric potential V: V Capacitance C: F Magnetic flux density \vec{B} : T or Wb/m² Magnetic field strength \vec{H} : A/m Magnetic flux Ψ: Wb Electromotive force ε : V Inductance L: H

Electric permittivity ϵ : F/m Magnetic permeability μ : H/m Conductivity σ : Si/m

Charge density ρ : C/m³ Surface charge density ρ_s : C/m² Current density \vec{J} : A/m²

Intrinsic impedance η : Ohm Wave number β : rad/m

Characteristic impedance Z: Ohm

Office Hours

Any questions?

