

November 12th, 2024

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

Normal incidence: **GENERAL**

0

3

$$\tilde{E}_i(y) = -E_0 e^{-\alpha_1 y} e^{-j\beta_1 y} \hat{x}$$
$$\tilde{H}_i(y) = -\frac{E_0}{\eta_1} e^{-\alpha_1 y} e^{-j\beta_1 y} \hat{z}$$

$$\begin{split} \tilde{E}_r(y) &= -E_0 \Gamma e^{\alpha_1 y} e^{j\beta_1 y} \hat{x} \\ \tilde{H}_r(y) &= \frac{E_0}{\eta_1} \Gamma e^{\alpha_1 y} e^{j\beta_1 y} \hat{z} \end{split}$$

 $\sigma_1, \mu_1, \epsilon_1$

y < 0

 $\tilde{E}_t(y) = -E_0 \tau e^{-\alpha_2 y} e^{-j\beta_2 y} \hat{x}$

$$\widetilde{H}_t(y) = -\frac{E_0}{\eta_2} \tau e^{-\alpha_2 y} e^{-j\beta_2 y} \hat{z}$$

 $\sigma_2, \mu_2, \epsilon_2$ y > 0

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

Normal incidence: PEC

$$\widetilde{E}_i(y) = -E_0 e^{-j\beta_1 y} \hat{x}$$
$$\widetilde{H}_i(y) = -\frac{E_0}{\eta_1} e^{-j\beta_1 y} \hat{z}$$

$$\tilde{E}_r(y) = -E_0 \Gamma e^{j\beta_1 y} \hat{x}$$
$$\tilde{H}_r(y) = \frac{E_0}{\eta_1} \Gamma e^{j\beta_1 y} \hat{z}$$

 $\sigma_1, \mu_1, \epsilon_1$

y < 0

$$\tilde{E}_t(y) = \vec{0} = -E_0 \tau e^{-j\beta_2 y} \hat{x}$$

$$\widetilde{H}_t(y) = \vec{0} = -\frac{E_0}{\eta_2} \tau e^{-j\beta_2 y} \hat{z}$$

$$\sigma_2 = \infty$$
$$y > 0$$

0

<u>ک</u> ۱۱

Oblique incidence: PEC (HW11 P2 Hint)

$$\tilde{E}_i(y,z) = -E_0 e^{-jk_y y} e^{-jk_z z} \hat{x}$$

 $\tilde{E}_t(y, z) = \vec{0}$

Oblique incidence: PEC (HW11 P2 Hint)

$$\tilde{E}_i(y,z) = -E_0 e^{-jk_y y} e^{-jk_z z} \hat{x}$$

 $\tilde{E}_t(y, z) = \vec{0}$

$$\tilde{E}_r(y,z) = -\Gamma E_0 e^{jk_y y} e^{-jk_z z} \hat{x}$$

$$\begin{aligned} \sigma_1 &= 0, \mu_1, \epsilon_1 & & & \\ y &< 0 & & \\ &$$

Standing Waves (dielectric to PEC)

$$\tilde{E}_i(y) = -E_0 e^{-j\beta_1 y} \hat{x}$$

 $\tilde{E}_r(y) = E_0 e^{j\beta_1 y} \hat{x}$

Problem 1: Standing Waves

A wave propagates through an imperfect dielectric and is normally incident upon a perfect electrical conductor. Is a standing wave created in the imperfect dielectric?

$$\tilde{E}_i(y) = -E_0 e^{-\alpha_1 y} e^{-j\beta_1 y} \hat{x} \qquad \qquad \tilde{E}_r(y) = -E_0 \Gamma e^{\alpha_1 y} e^{j\beta_1 y} \hat{x}$$

Transmission Lines!

Why do we care?

Transmission Line

Transmission Line: Parallel Plate Version

Transmission Line: Parallel Plate Version

That's... kinda it?

The remainder of HW11 gives you the equation to use to solve for what you want.

We'll start dealing with TLs fully in HW12.

Midterm 1 equations, in one place

 $\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r}$ $\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B})$ $\vec{E} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r}$

 $\hat{n} \cdot \left(\vec{D}_1 - \vec{D}_2\right) = \rho_s$ $\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$ $\hat{n} \cdot \left(\vec{P}_1 - \vec{P}_2\right) = -\rho_{b,s}$

$$\begin{split} \epsilon & \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}} \\ & \oiint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}} \\ & \iiint \rho dV = Q_{\text{enclosed}} \\ & \oiint \vec{B} \cdot d\vec{S} = 0 \\ & I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t} \end{split}$$

$$\nabla \times \vec{E} = 0$$

$$\vec{E} = -\nabla V$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

 $\epsilon = \epsilon_0 (1 + \chi_e)$ $\vec{P} = \epsilon_0 \chi_e \vec{E} \qquad \nabla \cdot$ $\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E} \qquad \nabla \cdot$ $\vec{J} = \sigma \vec{E} \qquad -\nabla$ $\rho_b = -\nabla \cdot \vec{P} \qquad -\nabla$ $\nabla \cdot \epsilon_0 \vec{E} = \rho_f + \rho_b$

$$\begin{aligned} \nabla \cdot \vec{D} &= \rho \\ \nabla \cdot \vec{J} &= -\frac{\partial \rho}{\partial t} \\ -\nabla^2 V &= \frac{\rho}{\epsilon} \end{aligned}$$

Midterm 2 equations, in one place

Q = CV $\vec{B} = \frac{\mu I}{2\pi r} \hat{\phi}$ $\Psi = \iint_{S} \vec{B} \cdot d\vec{S} \qquad \qquad v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu\epsilon}}$ $G = \frac{\sigma}{c}C$ $R = \frac{1}{G}$ $d\vec{B} = \frac{\mu I d\vec{\ell} \times \hat{r}}{4\pi r^2}$ $-\frac{d}{dt}\iint_{C}\vec{B}\cdot d\vec{S} = \oint_{C}\vec{E}\cdot d\vec{l} \qquad \omega = 2\pi f = \frac{2\pi}{T}$ $\vec{J}_b = \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$ $\oint_{C} \vec{H} \cdot d\vec{\ell} = \iint_{C} \vec{J} \cdot d\vec{S}$ $\eta = \frac{\sqrt{\mu}}{\sqrt{\epsilon}}$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$ $\beta = \omega \sqrt{\mu \epsilon}$ $\oint \vec{B} \cdot d\vec{\ell} = \mu I_{\text{encl}}$ $\oint \vec{E} \cdot d\vec{l} = \varepsilon$ $\vec{M} = \chi_m \vec{H}$ $\nabla^2 \vec{E} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$ $\vec{B} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$ $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $\varepsilon = \frac{W}{q} = \oint_C \frac{\vec{F}}{q} \cdot d\vec{l}$ $A\cos(\omega t - \beta x)\hat{z} \leftrightarrow Ae^{-j\beta x}\hat{z}$ $\vec{S} = \vec{E} \times \vec{H}$ $\nabla \cdot \vec{B} = 0$ $\tilde{S} = \tilde{E} \times \tilde{H}^*$ $< \vec{S} > = \frac{1}{2} \operatorname{Re} \{ \tilde{E} \times \tilde{H}^* \}$ $\Psi = LI$ $\hat{n} \cdot \left(\vec{B}_1 - \vec{B}_2 \right) = 0$ $\varepsilon = IR$ $\hat{n} \times \left(\vec{H}_1 - \vec{H}_2 \right) = \vec{J}_s$ $\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon \vec{E} \cdot \vec{E} + \frac{1}{2} \mu \vec{H} \cdot \vec{H} \right) + \nabla \cdot \vec{S} + \vec{J} \cdot \vec{E} = 0$ $\hat{n} \times \left(\vec{M}_1 - \vec{M}_2 \right) = \vec{J}_{b,s}$

Midterm 3 equations, in one place

	Condition	β	α	$ \eta $	au	$\lambda = \frac{2\pi}{\beta}$	$\delta = \frac{1}{\alpha}$
Perfect	$\sigma = 0$	(1) \overline{EII}	0	$\frac{\mu}{\mu}$	0	2π	\sim
dielectric	0 = 0	$\omega_V c\mu$	0	$\nabla \epsilon$	0	$\omega\sqrt{\epsilon\mu}$	\sim
Imperfect	$\sigma \parallel 1$		$\beta 1 \sigma _ \sigma / \mu$	$\overline{\mu}$	σ	2π	$2 \sqrt{\epsilon}$
dielectric	$\overline{\omega\epsilon} \ll 1$	$\sim \omega \sqrt{\epsilon \mu}$	$p_{\overline{2}\overline{\omega\epsilon}} - \overline{2}\sqrt{\epsilon}$	$\sim \sqrt{\epsilon}$	$2\omega\epsilon$	$\sim \frac{1}{\omega\sqrt{\epsilon\mu}}$	$\overline{\sigma}\sqrt{\mu}$
Good	$\frac{\sigma}{\omega\epsilon} \gg 1$	$\sim \sqrt{\pi f \mu \sigma}$	$\sim \sqrt{\pi f \mu \sigma}$	$\sqrt{\frac{\omega\mu}{\sigma}}$	45°	$\sim rac{2\pi}{\sqrt{\pi f\mu\sigma}}$	$\sim rac{1}{\sqrt{\pi f \mu \sigma}}$
conductor							
Perfect	$\sigma = \infty$	20	20	0		0	0
conductor	$v = \infty$				_	0	

$$v = \frac{\omega}{\beta} = \lambda f \qquad \nabla^2 \tilde{E} = (j\omega\mu)(\sigma + j\omega\epsilon)\tilde{E} \qquad \Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} \qquad \tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$$

Units

Charge Q: C Current I: A Electric field strength \vec{E} : N/C or V/m Electric flux density \vec{D} : C/m² Polarization field \vec{P} : C/m² Electric potential V: V Capacitance C: F Magnetic flux density \vec{B} : T or Wb/m² Magnetic field strength \vec{H} : A/m Magnetic flux Ψ : Wb Electromotive force ε : V Inductance L: H Electric permittivity ϵ : F/m Magnetic permeability μ : H/m Conductivity σ : Si/m

Charge density ρ : C/m³ Surface charge density ρ_s : C/m² Current density \vec{J} : A/m²

Intrinsic impedance η : Ohm Wave number β : rad/m

Any questions?

