

ECE329: Tutorial Session 10

November 5th, 2024

Wave Reflection & Transmission

TEM wave incident normally on a boundary

Reflection & Transmission Coefficients

$$\widetilde{E}_{i}(x) = -E_{0}e^{-\alpha_{1}x}e^{-j\beta_{1}x}\hat{y}$$
$$\widetilde{H}_{i}(x) = -\frac{E_{0}}{\eta_{1}}e^{-\alpha_{1}x}e^{-j\beta_{1}x}\hat{z}$$

 $\sigma_1, \mu_1, \epsilon_1$

x < 0

 $\tilde{E}_t(x) =$

 $\tilde{E}_r(x) = \widetilde{H}_t(x) =$

0

ĸ

 $\widetilde{H}_r(x) =$

 $\sigma_2, \mu_2, \epsilon_2$ x > 0

What to enforce?

$$\tilde{E}_i(x) = -E_0 e^{-\alpha_1 x} e^{-j\beta_1 x} \hat{y}$$
$$\tilde{H}_i(x) = -\frac{E_0}{\eta_1} e^{-\alpha_1 x} e^{-j\beta_1 x} \hat{z}$$

$$\tilde{E}_r(x) = -E_0 \Gamma e^{\alpha_1 x} e^{j\beta_1 x} \hat{y}$$
$$\tilde{H}_r(x) = \frac{E_0}{\eta_1} \Gamma e^{\alpha_1 x} e^{j\beta_1 x} \hat{z}$$

 $\sigma_1,\mu_1,\epsilon_1$

x < 0

0

॥ ४

$$E_t(x) = -E_0 \tau e^{-\alpha_2 x} e^{-j\beta_2 x} \hat{y}$$
$$\tilde{H}_t(x) = -\frac{E_0}{\eta_2} \tau e^{-\alpha_2 x} e^{-j\beta_2 x} \hat{z}$$
$$\sigma_{2}, \mu_{2}, \epsilon_{2}$$
$$x > 0$$

Solve!

$$\tilde{E}_i(0) = -E_0 \hat{y}$$
$$\tilde{H}_i(0) = -\frac{E_0}{\eta_1} \hat{z}$$

$$\tilde{E}_r(0) = -E_0 \Gamma \hat{y}$$
$$\tilde{H}_r(0) = \frac{E_0}{\eta_1} \Gamma \hat{z}$$

 $\sigma_1, \mu_1, \epsilon_1$

x < 0

0

וו א $\tilde{E}_t(0) = -E_0 \tau \hat{y}$ $\tilde{H}_t(0) = -\frac{E_0}{\eta_2} \tau \hat{z}$ $\sigma_2, \mu_2, \epsilon_2$

Coefficients

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} \qquad \tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$$

Check our work:

1. What if
$$\eta_1 = \eta_2$$
?

2. What if $\eta_2 = 0$?

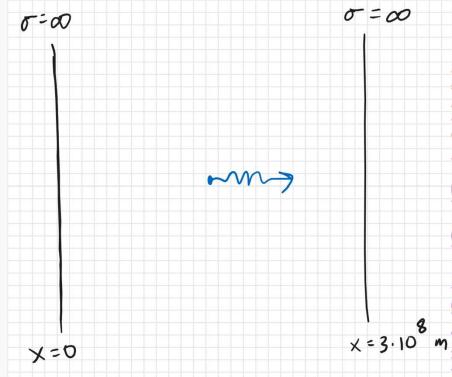
$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

A wave propagates through free space and is normally incident upon a perfect dielectric with $\epsilon = 16\epsilon_0$ and $\mu = \mu_0$. What are Γ and τ ?

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

A single delta wave pops into existence at t = 0 halfway between the plates and moves to the right with amplitude 1000. Assume the area between the plates is free space.

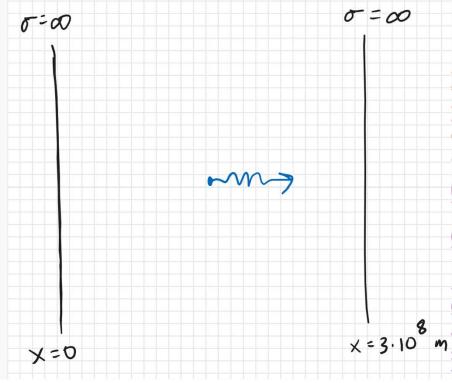
Where is the wave at t = 1s? What will its amplitude be?



$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

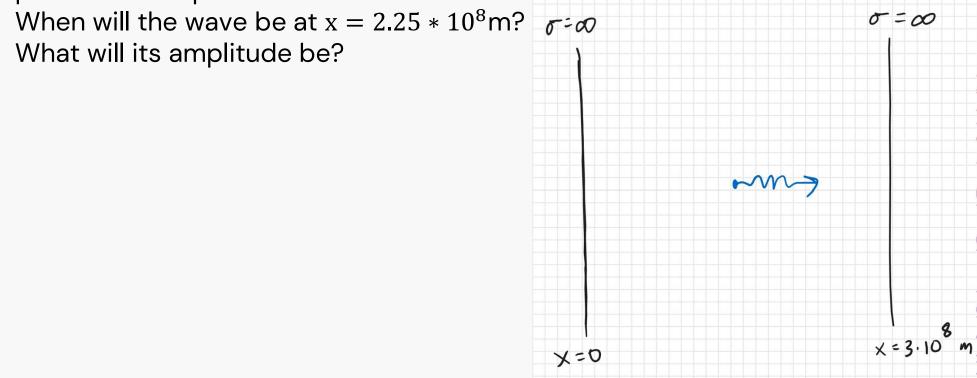
A single delta wave pops into existence at t = 0 halfway between the plates and moves to the right with amplitude 1000. Assume the area between the plates is free space.

Where is the wave at t = 5.25s? What will its amplitude be?



$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

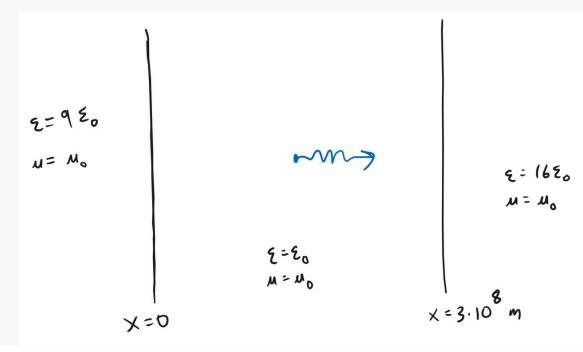
A single delta wave pops into existence at t = 0 halfway between the plates and moves to the right with amplitude 1000. Assume the area between the plates is free space.



$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

A single delta wave pops into existence at t = 0 in the middle and moves to the right with amplitude 1000. Assume the area between the plates is free space.

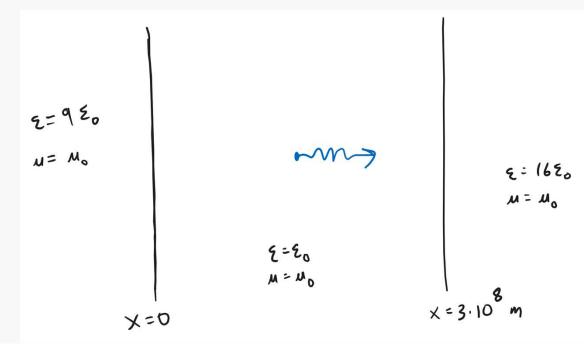
Where is the wave at t = 1s? What will its amplitude be?



$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

A single delta wave pops into existence at t = 0 in the middle and moves to the right with amplitude 1000. Assume the area between the plates is free space.

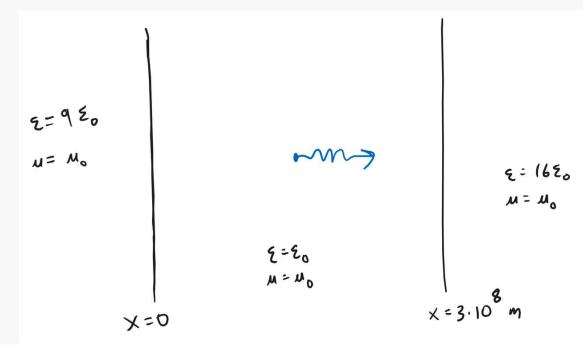
Where is the wave at t = 5.25 s? What will its amplitude be?



$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

A single delta wave pops into existence at t = 0 in the middle and moves to the right with amplitude 1000. Assume the area between the plates is free space.

When will the wave be at $x = 2.25 * 10^8$ m? What will its amplitude be?



Midterm 1 equations, in one place

 $\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r}$ $\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B})$ $\vec{E} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r}$

 $\hat{n} \cdot \left(\vec{D}_1 - \vec{D}_2\right) = \rho_s$ $\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$ $\hat{n} \cdot \left(\vec{P}_1 - \vec{P}_2\right) = -\rho_{b,s}$

$$\begin{split} \epsilon & \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}} \\ & \oiint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}} \\ & \iiint \rho dV = Q_{\text{enclosed}} \\ & \oiint \vec{B} \cdot d\vec{S} = 0 \\ & I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t} \end{split}$$

$$\nabla \times \vec{E} = 0$$

$$\vec{E} = -\nabla V$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

 $\epsilon = \epsilon_0 (1 + \chi_e)$ $\vec{P} = \epsilon_0 \chi_e \vec{E} \qquad \nabla \cdot$ $\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E} \qquad \nabla \cdot$ $\vec{J} = \sigma \vec{E} \qquad -\nabla$ $\rho_b = -\nabla \cdot \vec{P} \qquad -\nabla$ $\nabla \cdot \epsilon_0 \vec{E} = \rho_f + \rho_b$

$$\begin{aligned} \nabla \cdot \vec{D} &= \rho \\ \nabla \cdot \vec{J} &= -\frac{\partial \rho}{\partial t} \\ -\nabla^2 V &= \frac{\rho}{\epsilon} \end{aligned}$$

Midterm 2 equations, in one place

Q = CV $\vec{B} = \frac{\mu I}{2\pi r} \hat{\phi}$ $\Psi = \iint_{S} \vec{B} \cdot d\vec{S} \qquad \qquad v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu\epsilon}}$ $G = \frac{\sigma}{c}C$ $R = \frac{1}{G}$ $d\vec{B} = \frac{\mu I d\vec{\ell} \times \hat{r}}{4\pi r^2}$ $-\frac{d}{dt}\iint_{C}\vec{B}\cdot d\vec{S} = \oint_{C}\vec{E}\cdot d\vec{l} \qquad \omega = 2\pi f = \frac{2\pi}{T}$ $\vec{J}_b = \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$ $\oint_{C} \vec{H} \cdot d\vec{\ell} = \iint_{C} \vec{J} \cdot d\vec{S}$ $\eta = \frac{\sqrt{\mu}}{\sqrt{\epsilon}}$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$ $\beta = \omega \sqrt{\mu \epsilon}$ $\oint_{C} \vec{B} \cdot d\vec{\ell} = \mu I_{\text{encl}}$ $\oint \vec{E} \cdot d\vec{l} = \varepsilon$ $\vec{M} = \chi_m \vec{H}$ $\nabla^2 \vec{E} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$ $\vec{B} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$ $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $\varepsilon = \frac{W}{q} = \oint_C \frac{\vec{F}}{q} \cdot d\vec{l}$ $A\cos(\omega t - \beta x)\hat{z} \leftrightarrow Ae^{-j\beta x}$ $\vec{S} = \vec{E} \times \vec{H}$ $\nabla \cdot \vec{B} = 0$ $\tilde{S} = \tilde{E} \times \tilde{H}^*$ $< \vec{S} > = \frac{1}{2} \operatorname{Re} \{ \tilde{E} \times \tilde{H}^* \}$ $\Psi = LI$ $\hat{n} \cdot \left(\vec{B}_1 - \vec{B}_2 \right) = 0$ $\varepsilon = IR$ $\hat{n} \times \left(\vec{H}_1 - \vec{H}_2 \right) = \vec{J}_s$ $\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon \vec{E} \cdot \vec{E} + \frac{1}{2} \mu \vec{H} \cdot \vec{H} \right) + \nabla \cdot \vec{S} + \vec{J} \cdot \vec{E} = 0$ $\hat{n} \times \left(\vec{M}_1 - \vec{M}_2 \right) = \vec{J}_{b,s}$

Midterm 3 equations, in one place

	Condition	eta	lpha	$ \eta $	au	$\lambda = \frac{2\pi}{\beta}$	$\delta = \frac{1}{\alpha}$
Perfect	$\sigma = 0$	(1) (61)	0	$/\mu$	0	2π	\sim
dielectric	0 = 0	$\omega\sqrt{\epsilon\mu}$	0	$\sqrt{\epsilon}$	0	$\frac{2\pi}{\omega\sqrt{\epsilon\mu}}$	∞
Imperfect	$\frac{\sigma}{\omega\epsilon} \ll 1$	$\sim \omega \sqrt{\epsilon \mu}$	$\beta \frac{1}{2} \frac{\sigma}{\omega \epsilon} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$	$\sim \sqrt{rac{\mu}{\epsilon}}$	$\sim rac{\sigma}{2\omega\epsilon}$	$\sim rac{2\pi}{\omega\sqrt{\epsilon\mu}}$	$\frac{2}{\sigma}\sqrt{\frac{\epsilon}{\mu}}$
dielectric							
Good	$\frac{\sigma}{\omega\epsilon} \gg 1$	$\sim \sqrt{\pi f \mu \sigma}$	$\sim \sqrt{\pi f \mu \sigma}$	$\sqrt{\frac{\omega\mu}{\sigma}}$	45°	$\sim rac{2\pi}{\sqrt{\pi f\mu\sigma}}$	$\sim rac{1}{\sqrt{\pi f \mu \sigma}}$
conductor							
Perfect	$\sigma - \infty$	\sim	\sim	0		0	0
conductor	$\sigma = \infty$	∞	∞	0	_	0	0

$$v = \frac{\omega}{\beta} = \lambda f \qquad \nabla^2 \tilde{E} = (j\omega\mu)(\sigma + j\omega\epsilon)\tilde{E} \qquad \Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} \qquad \tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$$

Units

Charge Q: C Current I: A Electric field strength \vec{E} : N/C or V/m Electric flux density \vec{D} : C/m² Polarization field \vec{P} : C/m² Electric potential V: V Capacitance C: F Magnetic flux density \vec{B} : T or Wb/m² Magnetic field strength \vec{H} : A/m Magnetic flux Ψ : Wb Electromotive force ε : V Inductance L: H Electric permittivity ϵ : F/m Magnetic permeability μ : H/m Conductivity σ : Si/m

Charge density ρ : C/m³ Surface charge density ρ_s : C/m² Current density \vec{J} : A/m²

Intrinsic impedance η : Ohm Wave number β : rad/m

Any questions?

