University of Illinois

Gilbert, Kim, Schutt-Aine, Waldrop

Exam 2

Thursday, Mar. 14, 2013 — 7:00-8:15 PM

Name:				
Section:	9 AM	12 Noon	1 PM	2 PM

Please clearly PRINT your name in CAPITAL LETTERS and CIRCLE YOUR SECTION in the above boxes.

This is a closed book exam and calculators are not allowed. Please show all your work and make sure to include your reasoning for each answer. All answers should include units wherever appropriate.

Problem 1 (25 points)	
Problem 2 (25 points)	
Problem 3 (25 points)	
Problem 4 (25 points)	
TOTAL (100 points)	

- 1. Consider a uniform volumetric current $\mathbf{J} = J_0 \hat{z} \text{ A/m}^2$ flowing along an inifinitely long cylinder of radius *a* centered on the \hat{z} -axis.
 - a) (5 pts) Use Ampere's Law in integral form to find the vector magnetic field $\mathbf{H}(r)$ outside the cylinder as a function of radius r > a.

b) (6 pts) Use Ampere's Law in integral form to find the vector magnetic field $\mathbf{H}(r)$ inside the cylinder as a function of radius r < a.

- c) (4 pts) What is the magnitude and direction of the magnetic field **H** along the center of the cylinder (i.e., at r = 0)?
- d) (10 pts) Now consider that the current distribution is not uniform across the cross-section of the cylinder, such that it instead contains an infinitely long cylindrical hole of radius b whose center is parallel to the \hat{z} -axis but offset by a distance d (see diagram). What is the magnitude of the magnetic field $|\mathbf{H}|$ along the center axis of the hole? **Hint**: Use superposition of the above results.

2. A square loop of wire of some finite resistance R and 4 cm² surface area is located within a region of constant magnetic field $\mathbf{B} = 4\hat{z} \text{ Wb/m}^2$ as illustrated in the following diagrams (perspective and side views are shown).

- a) (5 pts) What is the magnetic flux Φ through the loop when the orientation angle of the loop is $\theta = 180^{\circ}$? In your flux calculation make use of **dS** orientation shown in the diagram on the right.
- b) (5 pts) What is the flux Φ as a function of angle θ (using the same sign convention as in part a)?

- c) (5 pts) What is the direction and magnitude of induced current flow when the loop is held stationary at $\theta = 0^{\circ}$?
- d) (5 pts) Now consider that the loop is no longer stationary and is instead rotating, such that angle θ is time varying at a rate of $\frac{d\theta}{dt} = 2\pi$ rad/s. What is the emf \mathcal{E} around the rotating loop at the instant when $\theta = 135^{\circ}$?
- e) (5 pts) What is the direction and magnitude of induced current flow around the loop at the same instant? You may draw a picture to explain your answer. Be sure to justify your answer.

3. A plane TEM wave is generated by a surface current $\mathbf{J}_{\mathbf{s}}(t)$ on the x = 0 plane and propagates away from the source in a vacuum ($v = c \approx 3 \times 10^8$ m/s and $\eta = \eta_0 \approx 120\pi \Omega$). The electric field is observed to vary with time at x = 300 m according to $E_y(300 \text{ m}, t) = 4u(t - t_0) \Delta(\frac{t - t_0}{\tau})$ V/m, as depicted in the figure below:

a) (2 pts) What are the numerical values of the time constants t_0 and τ used in the expression above to describe the electric field variation at x = 300 m?

b) (4 pts) Write the expression for the surface current density $\mathbf{J}_{\mathbf{s}}(t)$ located at x = 0 that generates the TEM wave.

c) (6 pts) Write the expression for associated vector wavefield $\mathbf{H}(x, t)$ explicitly in terms of all space and time variables x and t. d) (3 pts) Which of the following figures depicts $E_y(x,t)$ vs time t at position x = -300 m?

e) (5 pts) Identify which of the following figures depicts $H_z(x,t)$ vs position y at time $t = 3 \mu s$ and add appropriate numerical values along each axis in the figure you choose.

f) (5 pts) Plot $E_y(x,t)$ vs position x at time $t = 0.5 \ \mu$ s. Be sure to label the values on the E_y and x axes.

- 4. Consider a monochromatic TEM plane wave of frequency f = 1 GHz that is traveling along the $-\hat{z}$ direction at a propagation speed $v_p = c/3$ through a homogeneous, non-conducting medium characterized by $\epsilon_r = 3$. At t = 0 and z = 0, the electric wavefield has equal amplitude positive E_x and E_y components, magnitude $|\mathbf{E}| = 2$ V/m, and zero phase angle.
 - a) (3 pts) What are the relative permeability μ_r and intrinsic impedance η of the medium?

b) (3 pts) Write the expression for the vector wavefield $\mathbf{E}(z,t)$ propagating in the $-\hat{z}$ direction in terms of angular frequency ω and wavenumber β .

c) (2 pts) What are the numerical values for ω and β ?

d) (4 pts) Write the expression for the associated *time-domain* wavefield **H** and *phasor* wavefield $\tilde{\mathbf{H}}$ propagating in the $-\hat{z}$ direction.

e) (3 pts) Choose which set of simplified curl equations describes the TEM wave propagation for this geometry.

i.
$$-\frac{\partial E_x}{\partial z}\hat{x} + \frac{\partial E_y}{\partial z}\hat{y} = -\mu\frac{\partial H_y}{\partial t}\hat{x} - \mu\frac{\partial H_x}{\partial t}\hat{y} \quad \text{and} \quad -\frac{\partial H_x}{\partial z}\hat{x} + \frac{\partial H_y}{\partial z}\hat{y} = \epsilon\frac{\partial E_y}{\partial t}\hat{x} + \epsilon\frac{\partial E_x}{\partial t}\hat{y}$$

ii.
$$-\frac{\partial E_z}{\partial x}\hat{x} + \frac{\partial E_z}{\partial y}\hat{y} = -\mu\frac{\partial H_z}{\partial t}\hat{x} - \mu\frac{\partial H_z}{\partial t}\hat{y} \quad \text{and} \quad -\frac{\partial H_z}{\partial x}\hat{x} + \frac{\partial H_z}{\partial y}\hat{y} = \epsilon\frac{\partial E_z}{\partial t}\hat{x} + \epsilon\frac{\partial E_z}{\partial t}\hat{y}$$

iii.
$$-\frac{\partial E_y}{\partial z}\hat{x} + \frac{\partial E_x}{\partial z}\hat{y} = -\mu\frac{\partial H_x}{\partial t}\hat{x} - \mu\frac{\partial H_y}{\partial t}\hat{y} \quad \text{and} \quad -\frac{\partial H_y}{\partial z}\hat{x} + \frac{\partial H_x}{\partial z}\hat{y} = \epsilon\frac{\partial E_x}{\partial t}\hat{x} + \epsilon\frac{\partial E_y}{\partial t}\hat{y}$$

iv.
$$-\frac{\partial E_y}{\partial z}\hat{x} + \frac{\partial E_x}{\partial z}\hat{y} = -\mu\frac{\partial H_y}{\partial t}\hat{x} - \mu\frac{\partial H_x}{\partial t}\hat{y} \quad \text{and} \quad -\frac{\partial H_y}{\partial z}\hat{x} + \frac{\partial H_x}{\partial z}\hat{y} = \epsilon\frac{\partial E_y}{\partial t}\hat{x} + \epsilon\frac{\partial E_x}{\partial t}\hat{y}$$

- f) (2 pts) **TRUE** or **FALSE**: The time-averaged power transmitted by the wave described above is constant and uniform everywhere z < 0.
- g) (2 pts) **TRUE** or **FALSE**: The wave described above is characterized by a linear dispersion relation.
- h) (2 pts) **TRUE** or **FALSE**: For general EM waves, the Poynting vector can be oriented in a different direction as the propagation velocity.
- i) (2 pts) **TRUE** or **FALSE**: In general, Maxwell's equations dictate that all transverse electromagnetic waves must be planar.
- j) (2 pts) **TRUE** or **FALSE**: In general, some solutions to Maxwell's equations do not satisfy the wave equation: $\nabla^2 \mathbf{E} = \mu \epsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$

Mors

2. (a) For
$$\theta = 180^{\circ}$$
, ds is along ± 2 .

$$\Xi = \int \overline{6} \cdot ds = \int B_{2}^{\circ} \cdot 2 ds = B_{2} \int ds = 4 (4 \cdot 10^{\circ}) = 1.6 \cdot 10^{-3} [M] \\
= 4 cm^{2} = 4 (10^{\circ})^{2} m^{2}$$
(b) ds points along -2 for $\theta = 0$. \Rightarrow cossic
 $a \log g - 2$ for $\theta = 7_{2} \Rightarrow \sin e^{-3}$
so $ds = (-2\cos\theta - 3\sin\theta) ds$

$$\int form 2 \cdot -2 \\
\overline{E} = \int B_{2}^{\circ} \cdot ds = \int B_{2}\cos\theta (-1) ds = -1 \cdot b \cdot 10^{-3} \cos\theta \quad [mb]$$
(c) (a) $\theta = 0^{\circ}$, $\overline{E} = -1 \cdot b \cdot 10^{-3} \quad [mb]$ but if stationary, $\frac{d\overline{E}}{d\overline{E}} = 0$.
so $\varepsilon = 0$, mo induced current flow.
(a) $\varepsilon = -d\overline{E} = -\frac{d}{dt} (-1.b \cdot 10^{-3} \cosh\theta) = 1.6 \cdot 10^{-3} \frac{d}{dt} (cm\theta)$

$$= -1.b \cdot 10^{-3} \sin\theta \frac{d\theta}{dt} = -1.5 \cdot 10^{-3} \sin(125) \text{ [V]}$$

$$= +1.b \text{ T} \sqrt{2} \cdot 10^{-3} \text{ [V]}$$
(c) $\varepsilon = 70$ so expect current to flow un the same direction
as the contour associated with $d\overline{s}$ $d\overline{s} = 1 + \frac{1}{2} \frac{$

.

.

3.
$$E_y(300 \text{ m}, t) = 4 \text{ u}(t-t_s) \Delta(\frac{t-t_s}{T})$$

books like : $u^{(t+t_s)} + \frac{1}{t_s} + \frac{1}{$

Wors.

H.
$$f = 1.5H^{2} = 1 \cdot 10^{9} H^{2}$$

 $N_{F} = -2^{2}$, $V_{F} = \sqrt{3}$
 $E = 3E$
 $E(0,0) = E_{X}\hat{X} + E_{Y}\hat{y}$
 $and E_{X} = E_{Y}$, $both > 0$, $|E| = \sqrt{2Ex^{2}} = 2$
 $(P) = \frac{1}{\sqrt{\mu E}} = \frac{1}{\sqrt{\mu 3E}} = \frac{2}{\sqrt{\mu 3E}} = \frac{2}{2\sqrt{\mu 2E}}$
 $M = 3\mu_{3}$
 $D = E(2, +) = E_{X} \cos(\omega t + p^{2})\hat{x} + E_{Y} \cos(\omega t + p^{2})\hat{y}$
 $where E_{X} = \sqrt{2} = E_{Y}$
 $E^{1} = +) = \sqrt{2}\cos(\omega t + p^{2})\hat{x} + \hat{y} \cdot \hat{y} \cdot \hat{y} \cdot \hat{y}$
 $(V_{M})^{2}$
 $e^{-\omega} = 2\pi + 10^{9} [Ma/m]$
 $e^{-\omega} = 2\pi + 10^{9} [Ma/m]$
 $e^{-\omega} = \frac{2\pi \cdot 10^{9}}{\sqrt{2} \cdot 10^{7}} = 20\pi (M^{2}/m)^{2}$
 $(M = 1(2, t)) = \sqrt{2}\cos(\omega t + p^{2})(\hat{x} - \hat{y}) \cdot M^{2}m^{2}$
 $H(2) = \sqrt{\frac{12}{2}}e^{\frac{1}{2}h^{2}}(\hat{x} - \hat{y}) \cdot F^{1}m^{2}$
 $Where m^{2} = \sqrt{\frac{12}{2}}e^{\frac{1}{2}h^{2}}(\hat{x} - \hat{y}) \cdot F^{1}m^{2}$
 $(E) = \frac{12}{\sqrt{2}}e^{\frac{1}{2}h^{2}}(\hat{x} - \hat{y}) \cdot F^{1}m^{2}$
 $Where m^{2} = \sqrt{\frac{12}{2}}e^{\frac{1}{2}h^{2}}\hat{x} - \hat{y} \cdot F^{1}m^{2}$
 $(E) = E_{X}(2,1)\hat{x} + E_{Y}(2,1)\hat{y} \quad si = H_{X}(2,1)\hat{x} + H_{Y}(2,1)\hat{y}$
 $portial derivatives df_{X} and df_{X} \rightarrow 0 \quad (not covect form of curl), or time derivation of curl), or time derivation of curl h^{2}
 $So^{2} - \frac{2F_{Y}\hat{x} + \frac{2F_{Y}}{22}\hat{y} = -\mu \frac{2H_{Y}\hat{x}}{2F_{Y}}\hat{y} = E \frac{2F_{Y}\hat{x}}{2F_{Y}}\hat{y} = V$$

ł

Tops 35500