University of Illinois Gilbert, Kim, Schutt-Aine, Waldrop

Exam 1

Thursday, Feb. 14, 2013 — 7:00-8:15 PM

Please clearly PRINT your name in CAPITAL LETTERS and CIRCLE YOUR SECTION in the above boxes.

This is a closed book exam and calculators are not allowed. Please show all your work and make sure to include your reasoning for each answer. All answers should include units wherever appropriate.

- 1. Consider a static volumetric charge density $\rho(x, y, z) = 6\epsilon_0 \delta(z) + \rho_s \delta(z 4)$ C/m³ in a given region of free space (having permittivity ϵ_0), where the displacement field in the region $0 < z < 4$ m is known to be $\mathbf{D} = \hat{x}\epsilon_0 + \hat{z}3\epsilon_0 \text{ C/m}^2$, and $D_z = 2\epsilon_0$ for $z > 4$ m. Furthermore, field \mathbf{D} is uniform in each of the regions $z < 0$, $0 < z < 4$, and $z > 4$.
	- a) (3 pts) Determine ρ_s .
	- b) (3 pts) Determine **D** in the region $z > 4$ m.

c) (4 pts) Determine **D** in the region $z < 0$.

d) (6 pts) Determine **E** in all three regions $(z < 0, 0 < z < 4,$ and $z > 4$).

- e) (5 pts) What is the voltage drop from the point $(0, 0, 0)$ to the point $(0, 0, 4)$?
- f) (4 pts) Is the plane at $z = 4$ m an equipotential surface? Explain.
- 2. An electric field in free space is given as $\mathbf{E} = \hat{x}yz + \hat{y}zx + \hat{z}xy \text{ V/m}$.
	- a) (5 pts) Determine if the electric field given above is conservative.

b) (10 pts) Determine the electrostatic potential function, $V(x, y, z)$, corresponding to the field **E** assuming that the potential at the origin is $V(0,0,0) = 0$ V.

c) (5 pts) Determine the total charge contained in a cubic volume $V = 1$ m³ with vertices at $(x, y, z) = (0, 0, 0)$ and $(1, 1, 1)$ m.

d) (5 pts) Determine the charge density ρ in the region corresponding to the electric field.

3. The region between two infinite, plane parallel, perfectly conducting plates at $z = 0$ and $z = 1$ m is filled with two slabs of perfect dielectric materials having constant electric permittivities $\epsilon_1 = 2\epsilon_0$ for $0 < z < d$ m (region 1) and ϵ_2 for $d < z < 1$ (region 2). The bottom plate is held at constant potential $V(0) = 0$ and the electrostatic field between the plates is known to be

$$
\mathbf{E}(z) = \begin{cases} -\frac{3\epsilon_2}{8\epsilon_0}\hat{z}, & 0 < z < d \\ -\frac{3\epsilon_1}{8\epsilon_0}\hat{z}, & d < z < 1 \end{cases} \quad \text{V/m}
$$

- a) (4 pts) Verify that the above field satisfies Maxwell's boundary condition regarding D at the boundary between the two dielectric slabs.
- b) (7 pts) Write the expression for the electrostatic potential $V(z)$ for $0 < z < 1$ m in terms of ϵ_1 , ϵ_2 , and d.

- c) (5 pts) Determine ϵ_2 if the surface charge density on the top plate (at $z = 1$ m) is $\rho_s = 3\epsilon_0$ $\rm C/m^2$.
- d) (3 pts) Does $V(z)$ determined in part (b) satisfy Laplace's equation in the region $0 < z < 1$ m? Explain your answer.
- e) (5 pts) What would be the capacitance C of the structure described above if the parallel plates at $z = 0$ and $z = 1$ m were constrained to have finite areas $A = W^2$ (where $W \gg 1$ m) facing one another. In this calculation ignore the fringing fields, and express C as a function of ϵ_1 , ϵ_2 , d , and A .
- 4. Consider a co-axial cable of length L that is centered on the origin and lies along the \hat{z} axis. The inner conducting wire has a radius $R = 10$ mm and carries a surface charge density of $-3\epsilon_0$ C/m², while the thin, outer conducting shell has a radius $3R = 30$ mm and carries a surface charge density of ϵ_0 $\rm C/m^2$. The region between the two conductors is filled with a perfect dielectric material characterized by permittivity $\epsilon = 6\epsilon_0$.
	- a) (8 pts) Assuming that $R \ll L$ (such that fringing fields at the edges of the cable can be neglected), use Gauss' Law in integral form to determine the electric field in the region between the conductors $(R < r < 3R)$ and in the region outside of both conductors $(r > 3R)$.

b) (5 pts) What are the magnitude and unit direction, in Cartesian coordinates, of the displacement field **D** between the conductors at the *Cartesian* point $P = (-15 \text{ mm}, 20 \text{ mm}, 10 \text{ mm})$?

c) (8 pts) Assuming the inner conducting wire is held at a constant potential of $V_R = 10$ mV, what is the electrostatic potential V_{3R} on the outer conducting shell? Hint: there are two independent ways of solving for V_{3R} .

- d) (4 pts) If the dielectric material between the conductors is not perfect, such that $\sigma \neq 0$, indicate whether the following statements are true or false:
	- i. TRUE/FALSE: Free electrons inside the material will be accelerated toward the inner conductor via the Lorentz force.
	- ii. **TRUE/FALSE:** Current will flow in the $+\hat{r}$ direction.
	- iii. **TRUE/FALSE:** The surface charge density on the outer conductor will decrease initially.
	- iv. TRUE/FALSE: The capacitance of the system will decrease initially.

6. Consider a static volumetric charge density $\rho(x; y; z) = 6\varepsilon_o \delta(z) + \rho_s(z - 4)$ C/m³ in a given region of free space (having permittivity ε_o), where the displacement field in the region $0 < z < 4$ m is known to be $\mathbf{D} = \hat{x}\varepsilon_o + \hat{z}3\varepsilon_o C/m^2$ for and $D_z = 2\varepsilon_o C/m^2$ for $z > 4$ m. Furthermore, field **D** is uniform in each of regions $z < 0$, $0 < z < 4$ m, and $z > 4$ m.

- a) Determine ρ*s*.
- b) Determine **D** for the region $z > 4$ m.
- c) Determine **D** for the region $z < 0$.
- d) Determine **E** in all three regions ($z < 0$, $0 < z < 4$, and $z > 4$).
- e) What is the voltage drop from the point $(0,0,0)$ and the point $(0,0,4)$?
- f) Is the plane at *z*=4 m an equi-potential surface? Explain.

Solutions

6. Consider a static charge density *ρ ρ*(*x*; *y*; *z*) = $6ε_o δ(z) + ρ_s(z - 4)$ C/m³ in a given region of free space (having permittivity ε_0), where the displacement field is known to be $\mathbf{D} = \hat{x}\varepsilon_0 + \hat{z}3\varepsilon_0 C/m^2$ for $0 < z < 4$ m and $D_z = 2\varepsilon_0$ C/m² in the region $z > 4$ m. The volume charge density corresponds to two infinite surfaces at $z = 0$ m and $z = 4$ m with surface charges of 6C/m³ and ρ_s C/m³, respectively.

a) Apply boundary conditions at the interface: $\rho = \hat{n} \cdot [\mathbf{D}_1 - \mathbf{D}_2]$ At $z = 4m$, we have that the surface charge density ρ_s must be equal to the difference between the normal components of **D** on each side of the interface. Then, with $\hat{n} = \hat{z}$, we have:

$$
\rho_{\scriptscriptstyle s}=D_{\scriptscriptstyle z}\big|_{z=4^{\scriptscriptstyle +}}-D_{\scriptscriptstyle z}\big|_{z=4^{\scriptscriptstyle -}}=2\varepsilon_{\scriptscriptstyle o}-3\varepsilon_{\scriptscriptstyle o}=-\varepsilon_{\scriptscriptstyle o}\frac{C}{m^2}
$$

b) In the region $z > 4$ m, we know that $D_z = 2\varepsilon C/m^2$. In addition, since the tangential components of **E** at the interface at $z = 4$ m must be continuous, i.e., $E_x|_{z=4^+} = E_x|_{z=4^-}$, and assuming that the charged sheets are in a vacuum, we can verify that $D_r|_{z=0^+} = D_r|_{z=0^-} = \varepsilon_o$ C/m². Extending the field to the region $z > 4$ m, we find that

$$
\mathbf{D} = \varepsilon_o \hat{x} + 2\varepsilon_o \hat{z} \frac{C}{m^2} \text{ for } z > 4 \text{ m}.
$$

c) Applying boundary conditions at the interface at $z = 0$ m, we have that $D_z|_{z=0^+} - D_z|_{z=0^-} = 6$ thus, $D_r|_{r=0^-} = 3\varepsilon_0 - 6\varepsilon_0 = -3\varepsilon_0 C/m^2$. In addition, since $E_r|_{r=0^+} = E_r|_{r=0^-}$ and given that the space is a vacuum, we can verify that $D_x|_{z=0^-} = D_x|_{z=0^+} = \varepsilon_o$. Extending the fields to the region $z < 0$ m, we find that

$$
\mathbf{D} = \varepsilon_o \hat{x} - 3\varepsilon_o \hat{z} \frac{C}{m^2} \text{ for } z < 0 \text{ m. C}
$$

d) The displacement field, **D**, is defined to be equal to $\varepsilon_{medium}E$. Since the region is in free space $\varepsilon_{medium} = \varepsilon_0$. The electric field in the region where $z < 0$ m is

$$
\mathbf{E} = \frac{\mathbf{D}}{\varepsilon_o} = \frac{\varepsilon_o \hat{x} + (3\varepsilon_o - 6)\hat{z}}{\varepsilon_o} = \hat{x} - 3\hat{z}\frac{\text{V}}{\text{m}}
$$

The electric field in the region from $z = 0$ m to $z = 4$ m is

$$
\mathbf{E} = \frac{\mathbf{D}}{\varepsilon_o} = \frac{\varepsilon_o \hat{x} + 3\varepsilon_o \hat{z}}{\varepsilon_o} = \hat{x} + 3\hat{z} \frac{\text{V}}{\text{m}}
$$

The electric field in the region where *z >* 4m is

$$
\mathbf{E} = \frac{\mathbf{D}}{\varepsilon_o} = \frac{\varepsilon_o \hat{x} + 2\varepsilon_o \hat{z}}{\varepsilon_o} = \hat{x} + 2\hat{z} \frac{\mathbf{V}}{\mathbf{m}}
$$

e) We can calculate the voltage drop from *(0,0,0)* m to *(0,0,4)* with the following equation

$$
\Delta V = V_{(0,0,4)} - V_{(0,0,4)} = -\int_{0}^{4} \mathbf{E} \cdot d\mathbf{l} = -\int_{0}^{4} \frac{\mathbf{D}}{\varepsilon_o} \cdot d\mathbf{l}
$$

$$
= -\int_{0}^{4} (\hat{x} + 3\hat{z}) \cdot \hat{z} dz = -3z\Big|_{0}^{4} = -12 V
$$

f) The plane at *z*=4 m is NOT an equipotential surface. Because of the x-component of the electric field, integration on the top plane in the horizontal direction gives a non-zero result indicating a potential drop on the surface.

2.
$$
\vec{E} = \hat{x} y \hat{z} + \hat{y} z \hat{x} + \hat{z} xy
$$
 Ym free $\hat{z} = \hat{z}_{0}$
\n3. $\vec{U} \times \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} & \frac{\partial z}{\partial z} \\ \frac{\partial y}{\partial y} & \frac{\partial z}{\partial y} \end{vmatrix} = \hat{x}(x-x) + \hat{y}(b-0) + \hat{z}(z-z)$
\n $= 0$ $\therefore \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} & \frac{\partial z}{\partial z} \\ \frac{\partial y}{\partial y} & \frac{\partial z}{\partial y} \end{vmatrix} = 0$ $\therefore \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{y} \\ \frac{\partial y}{\partial y} & \frac{\partial z}{\partial y} & \frac{\partial z}{\partial z} \\ \frac{\partial z}{\partial y} & \frac{\partial z}{\partial z} \end{vmatrix}$
\n $= \begin{vmatrix} \hat{x} & \hat{y} & \hat{y} \\ -\hat{x} & \hat{y} & \hat{z} \\ 0 & \hat{y} & \hat{z} \end{vmatrix} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ -\hat{x} & \hat{y} & \hat{z} \\ 0 & \hat{y} & \hat{z} \end{vmatrix} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ -\hat{x} & \hat{y} & \hat{z} \\ 0 & \hat{y} & \hat{z} \end{vmatrix} = -xyz \quad [y]$
\n $= \begin{vmatrix} \hat{y} & \hat{y} & \hat{z} \\ 0 & \hat{y} & \hat{z} \end{vmatrix} = -xyz \quad [y]$
\n $= \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial z}{\partial y} & \hat{z} & \hat{z} \end{vmatrix} = -xyz \quad [y]$
\n $= \begin{vmatrix} \hat{x} & \hat{y}$

多种

3.
$$
\frac{1}{\sqrt{2}-2}
$$

\n3. $\frac{1}{\sqrt{2}-2}$
\n3. $\frac{1}{\sqrt{2}-2}$
\n4. $\frac{1}{\sqrt{2}-2}$
\n5. $\frac{1}{\sqrt{2}-2}$
\n6. $\frac{1}{\sqrt{2}-2}$
\n7. $\frac{1}{\sqrt{2}-2}$
\n8. $\frac{1}{\sqrt{2}-2}$
\n9. $\frac{1}{\sqrt{2}-2}$
\n10. $\frac{1}{\sqrt{2}-2}$
\n11. $\frac{1}{\sqrt{2}-2}$
\n12. $\frac{1}{\sqrt{2}-2}$
\n13. $\frac{1}{\sqrt{2}-2}$
\n14. $\hat{h} = \hat{f}: \quad D_{\hat{e}1} - D_{\hat{e}2} = 0$
\n15. $\hat{f}: \quad D_{\hat{e}1} - D_{\hat{e}2} = 0$
\n16. $\vec{f}: \quad \vec{f}: \quad -\vec{f} \setminus \vec{f}: \quad \vec{$

 $\ddot{}$

4.
\n9.
\n
$$
\oint_{c} \frac{1}{1 + \frac{1}{2}} \int_{c} \frac
$$

 \mathbf{I}

 \mathbf{I}

 \mathbf{I}

 $\frac{1}{2}$ Tops.