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Please clearly PRINT your name in CAPITAL LETTERS and CIRCLE YOUR SECTION in the above
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This is a closed book exam and calculators are not allowed. Please show all your work and make sure to
include your reasoning for each answer. All answers should include units wherever appropriate.
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Problem 4 (25 points)

TOTAL (100 points)
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1. Consider a static volumetric charge density ρ(x, y, z) = 6ε0δ(z)+ρsδ(z−4) C/m3 in a given region of
free space (having permittivity ε0), where the displacement field in the region 0 < z < 4 m is known
to be D = x̂ε0 + ẑ3ε0 C/m2, and Dz = 2ε0 for z > 4 m. Furthermore, field D is uniform in each of
the regions z < 0, 0 < z < 4, and z > 4.

a) (3 pts) Determine ρs.

b) (3 pts) Determine D in the region z > 4 m.

c) (4 pts) Determine D in the region z < 0.

d) (6 pts) Determine E in all three regions (z < 0, 0 < z < 4, and z > 4).

e) (5 pts) What is the voltage drop from the point (0, 0, 0) to the point (0, 0, 4)?

f) (4 pts) Is the plane at z = 4 m an equipotential surface? Explain.
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2. An electric field in free space is given as E = x̂yz + ŷzx+ ẑxy V/m.

a) (5 pts) Determine if the electric field given above is conservative.

b) (10 pts) Determine the electrostatic potential function, V (x, y, z), corresponding to the field E
assuming that the potential at the origin is V (0, 0, 0) = 0 V.

c) (5 pts) Determine the total charge contained in a cubic volume V = 1 m3 with vertices at
(x, y, z) = (0, 0, 0) and (1, 1, 1) m.

d) (5 pts) Determine the charge density ρ in the region corresponding to the electric field.
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3. The region between two infinite, plane parallel, perfectly conducting plates at z = 0 and z = 1 m
is filled with two slabs of perfect dielectric materials having constant electric permittivities ε1 = 2εo
for 0 < z < d m (region 1) and ε2 for d < z < 1 (region 2). The bottom plate is held at constant
potential V (0) = 0 and the electrostatic field between the plates is known to be

E(z) =


−3ε2
8ε0

ẑ, 0 < z < d

−3ε1
8ε0

ẑ, d < z < 1
V/m

a) (4 pts) Verify that the above field satisfies Maxwell’s boundary condition regarding D at the
boundary between the two dielectric slabs.

b) (7 pts) Write the expression for the electrostatic potential V (z) for 0 < z < 1 m in terms of ε1,
ε2, and d.

c) (5 pts) Determine ε2 if the surface charge density on the top plate (at z = 1 m) is ρs = 3εo
C/m2.

d) (3 pts) Does V (z) determined in part (b) satisfy Laplace’s equation in the region 0 < z < 1 m?
Explain your answer.

e) (5 pts) What would be the capacitance C of the structure described above if the parallel plates
at z = 0 and z = 1 m were constrained to have finite areas A = W 2 (where W � 1 m) facing
one another. In this calculation ignore the fringing fields, and express C as a function of ε1, ε2,
d, and A.
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4. Consider a co-axial cable of length L that is centered on the origin and lies along the ẑ axis. The inner
conducting wire has a radius R = 10 mm and carries a surface charge density of −3ε0 C/m2, while
the thin, outer conducting shell has a radius 3R = 30 mm and carries a surface charge density of ε0
C/m2. The region between the two conductors is filled with a perfect dielectric material characterized
by permittivity ε = 6ε0.

a) (8 pts) Assuming that R � L (such that fringing fields at the edges of the cable can be ne-
glected), use Gauss’ Law in integral form to determine the electric field in the region between
the conductors (R < r < 3R) and in the region outside of both conductors (r > 3R).

b) (5 pts) What are the magnitude and unit direction, in Cartesian coordinates, of the displacement
field D between the conductors at the Cartesian point P = (−15mm, 20mm, 10mm)?

c) (8 pts) Assuming the inner conducting wire is held at a constant potential of VR = 10 mV, what
is the electrostatic potential V3R on the outer conducting shell? Hint: there are two independent
ways of solving for V3R.

d) (4 pts) If the dielectric material between the conductors is not perfect, such that σ 6= 0, indicate
whether the following statements are true or false:
i. TRUE/FALSE: Free electrons inside the material will be accelerated toward the inner

conductor via the Lorentz force.
ii. TRUE/FALSE: Current will flow in the +r̂ direction.
iii. TRUE/FALSE: The surface charge density on the outer conductor will decrease initially.
iv. TRUE/FALSE: The capacitance of the system will decrease initially.
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6. Consider a static volumetric charge density ρ(x; y; z) = 6εo δ(z)+ρs(z - 4) C/m3 in a given 

region of free space (having permittivity εo), where the displacement field in the region 0 < z < 4 

m is known to be C/m2 for and Dz = 2εo C/m2 for z > 4 m. Furthermore, field D is 

uniform in each of regions z < 0, 0 < z < 4 m, and z > 4 m. 

a) Determine ρs. 

b) Determine D for the region z > 4 m. 

c) Determine D for the region z < 0. 

d) Determine E in all three regions (z < 0, 0 < z < 4, and z > 4). 

e) What is the voltage drop from the point (0,0,0) and the point (0,0,4)? 

f) Is the plane at z=4 m an equi-potential surface? Explain. 

Solutions 

6. Consider a static charge density ρ ρ(x; y; z) = 6εo δ(z)+ρs(z - 4) C/m3 in a given region of free 

space (having permittivity εo), where the displacement field is known to be C/m2 

for 0 < z < 4 m and Dz = 2εo C/m2 in the region z>4 m. The volume charge density corresponds 

to two infinite surfaces at z = 0m and z = 4m with surface charges of 6C/m3 and ρs C/m3, 

respectively. 

a) Apply boundary conditions at the interface: At z = 4m, we have that the 

surface charge density ρs must be equal to the difference between the normal components of D 

on each side of the interface. Then, with , we have: 

 

b) In the region z > 4m, we know that C/m2. In addition, since the tangential 

components of E at the interface at z = 4m must be continuous, i.e., , and 

assuming that the charged sheets are in a vacuum, we can verify that  C/m2. 

Extending the field to the region z > 4 m, we find that 



 

c) Applying boundary conditions at the interface at z = 0 m, we have that  

thus, C/m2. In addition, since  and given that the space 

is a vacuum, we can verify that . Extending the fields to the region z < 0 m, 

we find that 

C 

d) The displacement field, D, is defined to be equal to εmediumE. Since the region is in free space 

εmedium = ε0. The electric field in the region where z < 0 m is 

 

The electric field in the region from z = 0m to z = 4m is 

	
  

The electric field in the region where z > 4m is 

 

e) We can calculate the voltage drop from (0,0,0) m to (0,0,4) with the following equation 

	
  

 

f) The plane at z=4 m is NOT an equipotential surface. Because of the x-component of the 

electric field, integration on the top plane in the horizontal direction gives a non-zero result 

indicating a potential drop on the surface.  
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