$$
5 \text { min }
$$

1. (18 points) The three parts of this problem are independent.
a) (6 points) The electric field in a given region of free space $\left(\varepsilon=\varepsilon_{0}\right)$ is known to be $\mathbf{E}=2 x y \hat{x}+$ $x^{2} \hat{y}-2 z^{2} \hat{z} \mathrm{~V} / \mathrm{m}$. What is the volumetric charge density $\rho(x, y, z)$ in this region?

$$
\rho=\varepsilon_{0} \nabla \cdot \vec{E}=\varepsilon_{0}(2 y-4 z) c / m^{3}
$$

Your Answer (include appropriate units):
$\rho(x, y, z)=\cos _{0}(2 y-4 z) \mathrm{C} / \mathrm{m}^{3}$
b) (6 points) Two point charges $Q_{1}=3 \mathrm{C}$ and $Q_{2}=-1 \mathrm{C}$ are located along the \hat{x} axis at, $(x, y, z)=(1,0,0)$ and at $(x, y, z)=(-2,0,0)$, respectively. What is the displacement flux $\int \mathbf{D} \cdot d \mathbf{S}$ through the entire $x=0$ plane in the $+\hat{x}$ direction?

$$
-\frac{9}{2}+\frac{-1}{2}=-2
$$

Your Answer (include appropriate units):
$\int_{x=0} \mathbf{D} \cdot d \mathbf{S}=-2 C$
c) (6 points) The volumetric free current density in a given region of space is known to be $\mathbf{J}=$ $2 \sin (z) \hat{z} \mathrm{~A} / \mathrm{m}^{2}$. At point $(x, y, z)=(0,0,0)$ within this region, is the volumetric charge density ρ increasing with time, decreasing with time, or constant? Explain your reasoning.

$$
\begin{aligned}
-7 \cdot \vec{J} & =-2 \cos z=-2 \quad a+(0,0,0) \\
& =\frac{\partial s}{\partial t}
\end{aligned}
$$

Your Answer (circle correct answer): Increasing

Decreasing
Constant
Sine $\quad \frac{\partial \rho}{\partial t}<0 \mathrm{by}$ comefinemity
2. (16 points) A infintesimally thin spherical shell (having radius a) holds a total charge of 4 C . The shell is centered on the origin and embedded within free space (permittivity $\epsilon=\epsilon_{0}$).
a) (4 points) What is the surface charge density, ρ_{s}, on the shell? Be sure to include units with your answer.

$$
\frac{4 C}{4 \pi a^{2} m^{2}}
$$

Your Answer (include appropriate units):
$\rho_{s}=\frac{1}{\pi a^{2}} \frac{c}{n^{2}}$
b) (4 points) What is the vector electric field in the region inside the shell, $\mathbf{E}(r<a)$?

$$
\begin{aligned}
& \text { Your Answer (include appropriate units): } \\
& \mathbf{E}(r<a)=0 \mathrm{v} / \mathrm{m}
\end{aligned}
$$

c) (4 points What is the vector electric field in the region outside the shell, $\mathbf{E}(r>a)$?

$$
\varepsilon_{0}|E| 4 \pi r^{2}=4
$$

Your Answer (include appropriate units):
$\mathbf{E}(r>a)=\frac{1}{\pi \varepsilon_{0} r^{2}} \tilde{v}$
d) (4 points) Is the divergence of the electric field, $\nabla \cdot \mathbf{E}$, evaluated at any point outside the shell ($r>a$), less than, greater than, or equal to zero? Explain your answer.
$\cdots \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} E_{r}\right)$
r: divergence tran in spherical, $r^{2} E_{r}=$ cont.
Your Answer (circle correct answer):
Less than zero
Greater than zero

(C) 2024 Xu Chen. All rights reserved. Redistributing without permission is prohibited.
3. (32 points) The two parts of this problem are independent.
a) (16 points) In free space, there is a constant line of charge with density $\lambda\left[\frac{\mathrm{C}}{\mathrm{m}}\right]$ along the z-axis. An electron with charge $-q[\mathrm{C}]$ is moved from a position $r=1[\mathrm{~m}]$ to $r=2[\mathrm{~m}]$ away from the z-axis. What is the change in potential energy of the electron? (Note: if there is a net loss of potential energy, then the answer should be negative.)
$\bar{E}=\frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{r}\left[\frac{V}{m}\right]$

$$
\begin{aligned}
V(2)-V(1)=-\int_{1}^{2} \bar{E} \cdot d r \hat{r} & =\frac{-\lambda}{2 \pi \varepsilon_{0}} \int_{1}^{2} \frac{1}{r} d r \\
& =\frac{-\lambda}{2 \pi \varepsilon_{0}} \ln (2)[V]
\end{aligned}
$$

$$
W=-q V=\frac{q \lambda}{2 \pi \varepsilon_{0}} \ln (2)[J]
$$

Your Answer (include appropriate units):
$W=\frac{q \lambda}{2 \pi \varepsilon_{0}} \ln (2) \quad$ or $\frac{-g \lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{1}{2}\right) \quad[J]$
b) (16 points) There is a slab of perfect dielectric with $\epsilon=2 \epsilon_{0}$ laying in free space, with the surface parallel to the $x z$-plane as shown in the figure below. Inside the dielectric, the electric field is measured as $\mathbf{E}_{1}=3 \hat{x}+4 \hat{y}\left[\frac{\mathrm{~V}}{\mathrm{~m}}\right]$. Find the electric field \mathbf{E}_{0} in the free space above the slab.

Your Answer (include appropriate units):

$$
\mathrm{E}_{0}=3 \hat{x}+8 \hat{y}\left[\frac{v}{m}\right]
$$

$$
\begin{aligned}
& D_{n}^{+}-D_{n}^{-}=0 \\
& E_{t}^{+}-E_{t}^{-}=0 \\
& \begin{array}{cc}
\epsilon_{0} & \vec{E}_{0}=? \\
2 \epsilon_{0} & \overrightarrow{E_{1}}=3 \hat{x}+4 \hat{y}
\end{array} \bigsqcup^{y} \longleftarrow \rho_{8}=0 \quad \begin{array}{l}
\text { pufut } \\
\\
\end{array} \\
& \begin{array}{rlrl}
\bar{D}_{1}= & 6 \varepsilon_{0} \hat{x}+8 \varepsilon_{0} \hat{y} & & D_{0 y}=8 \varepsilon_{0} \rightarrow E_{0 y}=8\left[\frac{\nu}{\mathrm{~m}}\right] \\
& \text { tangential naval } & E_{0 x}=3\left[\frac{\nu}{\mathrm{~m}}\right]
\end{array}
\end{aligned}
$$

4. (34 points) A pair of infinite conducting plates at $x=0$ and $x=3[\mathrm{~m}]$ carry equal and opposite surface charge densities of $-1 \frac{C}{\mathrm{~m}^{2}}$ and $+1 \frac{\mathrm{C}}{\mathrm{m}^{2}}$, respectively. Region $0<x<1[\mathrm{~m}]$ is free space, and the region $1<x<3[\mathrm{~m}]$ is occupied by a perfect dielectric with permittivity $2 \epsilon_{0}$. There are no background fields.

$$
\begin{aligned}
& \text { a) (9 points) Find } \mathbf{D}, \mathbf{E}, \mathbf{P} \text { in the region } 0<x<1[\mathrm{~m}] \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Use superposition } \vec{D}=-\frac{p_{s}}{2}-\frac{p_{s}}{2}=-p_{s} \hat{x} / m^{2} \\
& (0<x<3 m) \text {. } \\
& \text { Between } 0 \leq x<1 m \\
& \vec{E}_{1}=\frac{\vec{D}}{\varepsilon_{0}}=\frac{-1}{\varepsilon_{0}} \hat{x} \mathrm{v} / \mathrm{m} . \\
& \vec{D}_{1}=\vec{D}=\varepsilon_{0} \vec{E}+\vec{P} \quad \Rightarrow \vec{P}_{1}=0 \quad \mathrm{c} / \mathrm{m}^{2}
\end{aligned}
$$

Your Answer (include appropriate units):

$$
\begin{aligned}
& \mathbf{D}=-1 \\
& \mathbf{E} \\
& \mathbf{E}=-\frac{1}{\varepsilon_{0}} \\
& \hat{x} \\
& \mathrm{l} \\
& \mathrm{l}
\end{aligned} \mathrm{~m}^{2} \mathrm{~m} .
$$

b) (9 points) Find $\mathbf{D}, \mathbf{E}, \mathbf{P}$ in the region $1<x<3[\mathrm{~m}]$.

$$
\begin{aligned}
& \vec{D}_{2}=-\rho_{s}=-1 \hat{x} \mathrm{c} / \mathrm{m}^{2} \\
& \vec{E}_{2}=\frac{\vec{D}}{2 \varepsilon_{0}}=-\frac{1}{2 \varepsilon_{0}} \hat{x} \mathrm{~V} / \mathrm{m} \\
& \vec{P}=\overrightarrow{D_{2}}-\varepsilon_{0} \vec{E}_{2}=-1 \hat{x}-\varepsilon_{0} \cdot\left(-\frac{1}{2 \varepsilon_{0}} \hat{x}\right)=-\frac{1}{2 \varepsilon_{0}} \hat{x} \mathrm{c} / \mathrm{m}^{2}
\end{aligned}
$$

Your Answer (include appropriate units):
$D=-1 \hat{x} \mathrm{c} / \mathrm{m}^{2}$
$\mathbf{E}=-\frac{1}{2 \varepsilon_{0}} \hat{x} \mathrm{v} / \mathrm{m}$
$\mathbf{P}=-\frac{1}{2} \hat{x} \mathrm{c} / \mathrm{m}^{2}$
c) (12 points) The two-plate system constitutes a capacitor. Find the capacitance per unit area C

$$
\begin{aligned}
\Delta V & =-\int_{0}^{3} \frac{1}{E} \cdot d \stackrel{\rightharpoonup}{l}=-\int_{0}^{1} \stackrel{\rightharpoonup}{E_{1}} \cdot d \vec{l}-\int_{1}^{3} \frac{\overrightarrow{E_{2}}}{0} \cdot d \stackrel{\rightharpoonup}{l} \\
& =-\int_{0}^{1}\left(-\frac{1}{\varepsilon_{0}} \hat{x}\right) \cdot(d x \hat{x})-\int_{1}^{3}\left(-\frac{1}{2 \varepsilon_{0}} \hat{x}\right) \cdot(d x \hat{x}) \\
& =\frac{1}{\varepsilon_{0}}+\frac{1}{2 \varepsilon_{0}} \cdot 2=\frac{2}{\varepsilon_{0}}[V]
\end{aligned}
$$

Or, since \vec{E} is in $1-D, \Delta V=\left|E_{1}\right| d_{1}+\left|E_{2}\right| d_{2}=\frac{1}{\varepsilon_{0}} \cdot 1+\frac{1}{2 \varepsilon_{0}} \cdot 2=\frac{2}{\varepsilon_{0}}$
per unit area $C=\frac{P_{s}}{4 V}=\frac{1}{2 / \varepsilon_{0}}=\frac{\varepsilon_{0}}{2}\left[F / \mathrm{m}^{2}\right]$

Your Answer (include appropriate units):

$$
C=\frac{\varepsilon_{0}}{2}\left[F / m^{2}\right]
$$

d) (2 points) Suppose the surface charge densities are fixed, but we remove the slab of perfect dielectric from $1<x<3[\mathrm{~m}]$, will the per unit area capacitance of the two-plate system increase, decrease, or remain the same? ECE 329 way: $V_{\uparrow \uparrow} v=E \cdot d \Upsilon$

e) (2 points) Suppose the potentials on the plates are fixed, but we remove the slab of perfect dielectric from $1<x<3[\mathrm{~m}]$, will the per unit area capacitance of the two-plate system increase, decrease, or remain the same? ECE 329 way: V fixed

