
ECE 329 FINAL EXAM Review

• All electric and magnetic phenomena in nature can be attributed to the existence of electrical charge
and charged particle motions. In classical descriptions, charge carriers having charge q and mass
m are treated as “point particles" (or “test charges") which obey Newton’s 2nd law of motion
(F = m dv/dt). In the presence of an electric field E and magnetic field B (which are related to
distant charge carriers as described by Maxwell’s equations), such a point particle will not affect the
fields in its vicinity, yet it will experience a force F (and thus an acceleration) as it moves with a
velocity v through the fields as described by the Lorentz force law: F = q (E + v ×B).

• Here, F, E, B and v are all vector fields which can be expressed in Cartesian coordinates in terms
of mutually orthogonal unit vectors x̂, ŷ and ẑ, which are related in terms of the right hand rule.
In general, each component of a vector field can itself be position and time dependent: i.e, E(r, t) =
x̂Ex(x, y, z, t) + ŷEy(x, y, z, t) + ẑEz(x, y, z, t). Vector fields obey the principle of superposition and
the vector operations of dot product (yielding a scalar) and cross product (yielding another vector).

• Stationary distributions of charge carriers generate static electric fields E [V/m]. The E generated in a
vacuum by a single stationary point charge having charge of Q [C] is radially symmetric around Q and
decreases inversely as the square of the distance from the charge (Coulomb’s Law: E = Q/(4πε0r

2) r̂
[V/m]), where ε0 ≈ 10−9/(36π) [F/m] is the permittivity of free space.

• Gauss’s Law for E in integral form states that the flux of the electric displacement vector
D ≡ ε0E [C/m2] through any closed surface S embedded in a vacuum equals the total amount of
charge enclosed inside the volume V bounded by S:∮

S
D · dS =

∫
V
ρ dV = Qencl

Note that dS always points towards the outside of the volume. When using Gauss’ Law to derive E
generated by symmetric charge distributions, it is wise to construct the Gaussian surface to exploit
the symmetry in order to simplify the evaluation of the surface integral in the LHS of the equation.
For example, by considering a single point charge inside a spherically symmetric Gaussian surface
around the charge, Coulomb’s Law can be derived. You should be familiar with using Gauss’ Law to
derive the electric field generated by simple, stationary charge distributions, including point charges
(in terms of Q [C]), line charges (in terms of ρl [C/m]), surface charges (in terms of ρS [C/m2]), and
symmetric volumetric charges (in terms of ρ [C/m3]).

• Since vector fields obey superposition, E generated by more complicated charge distributions can be
found straightforwardly by appropriately adding the simple results above. For example, two infinite
sheets holding equal and algebraically opposite charge density ±ρS [C/m2] produce E = ê ρs/ε0
V/m between the sheets (where ê is the unit vector normal to the two sheets pointing away from the
positive charge density) and E = 0 on either side of them.

• Stationary charge distributions in nature commonly exist in two forms: (1) as “free" charges dis-
tributed on the surface of conducting materials, or (2) as “bound" volumetric charge distributed
within a dielectric solid. Different material substances are distinguished by their response to applied
fields, which in turn depends on the proportions of free or bound charges they contain. These two
materials, and the behavior of electric fields within them, are discussed in more detail below:
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• Electric fields inside conducting materials:

– In highly conducting materials, many of the charge carriers contained within move easily in
response the Lorentz force they experience in the presence of applied fields. Collisions with
the lattice of atomic nuclei in the material, which occur at a frequency ν [s−1], cause them
to lose momentum. In response to these two forces (electrostatic Lorentz force and opposing
friction term), the charge carriers experience a net drift velocity v which can be determined
from Newton’s Force Law.

– The drift of electrons inside a conducting material constitutes a free current density J = qNv
[A/m2], where q, N , and v are the charge, volumetric number density, and velocity of the charge
carriers. The current density can also be expressed by Ohm’s Law in terms of the applied E and
electrical conductivity σ [S/m] as J = σE.

– When a perfect conductor (having σ =∞ and no bound charges) is placed in a static electric
field E0, the conducting electrons inside will move freely and accumulate at the surface of
the material until the resulting surface charge distribution generates a secondary field E′ that
completely cancels the applied E inside the conductor. As a result, E = E0 + E′ = 0 inside a
perfect conductor instantaneously, and E = 0 inside any conductor in steady-state equilibrium.

• Electric fields inside dielectric materials:

– Dielectrics are materials having a large number of charged particles in bound form, which are
not free to move far away from the nucleus that they orbit in response to an applied field E0.
Instead, a negatively charged cloud of bound (orbiting) electrons (of total charge −Q) becomes
slightly displaced (by d) from the positively charged atomic nucleus (of charge Q) and produces
a charge dipole having a dipole moment p ≡ Qd [Cm] and thus an induced electric field in the
opposite direction as the applied field. Some molecules have permanent dipole moments, which
can change orientation/alignment in response to an applied E. A perfect dielectric contains
no free charges (thus σ = 0) and all charges are bound.

– In a dielectric material which has Nd dipoles (stretched atoms and/or re-aligned molecules with
intrinsic p) per unit volume, the material itself has a dipole moment per unit volume P = Nd p
[C/m2], also known as the polarization field. Superposing all of the individual dipole moments
inside a perfect dielectric having a uniform polarization P yields a macroscopic induced electric
field E′ = −P/ε0. Superposing E′ with an externally applied electric field E0 yields a total field
E = E0 − P/ε0. The displacement vector is generalized to account for these induced fields by
being REDEFINED as D ≡ ε0E + P [C/m2]. Since P = 0 in a vacuum, D reverts to its
original free space expression.

– In most dielectrics, the polarization induced by an applied electric field E0 is proportional to
the total field E, such that P = ε0χeE, where χe is the (dimensionless) susceptibility. Thus,
the displacement vector is D ≡ ε0E + P = ε0(1 + χe)E ≡ ε0εrE ≡ εE in terms of the relative
permittivity ε [F/m], which is always greater than the permittivity of free space ε0. Note that,
in a perfect dielectric (having no free charges such that ∇ · D = 0), the displacement field is
constant and does not change from its free space value.

• Vector fields D and E will be continuous in space except across boundaries carrying non-zero surface
charge density ρS [C/m2]. Boundary conditions relating the fields on one side of the boundary to
fields on the other are given by:

n̂× (E+ −E−) = 0
n̂ · (D+ −D−) = ρS
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Here, n̂ is defined as the unit vector pointing perpendicularly away from the boundary, and region +
is defined to be on the side towards which n̂ is pointing. Note that the fields on both sides must be
evaluated at the location of the boundary. These equations imply that tangential components of E
are continuous while the normal components of E can be discontinuous if a surface charge is present
on the boundary AND/OR if the electric permitivitties are different in the two materials.

– If the material on one side of the boundary is a conductor, E must be set to zero there (since
steady-state EM fields cannot exist inside a conductor). If external fields exist on the other side
of the boundary, free charges inside the conductor must have moved to the surface to shield the
interior of the conductor − thus ρs 6= 0.

– If the materials on both sides of the boundary are perfect dielectrics, ρs = 0 since free charges
do not exist within either medium.

• In order to relate the spatial variations of E at a given point to the volumetric charge density at that
point, we can rewrite Gauss’ Law using the divergence theorem:

∮
S A ·dS =

∫
V (∇·A) dV , where

the divergence ∇ ·A of a given vector field A is the scalar flux density of A, expressed in Cartesian
coordinates as:

∇ ·A =
δAx
δx

+
δAy
δy

+
δAz
δz

A non-zero divergence corresponds to the existence of spatial variations in the vector field in the
direction of the field itself. A positive divergence of A implies that a source of A exists at that point
in space, while a negative divergence corresponds to a sink. Thus, Gauss’ Law for E in differential
form is ∇ ·D = ρ.

• According to the Helmholtz Theorem, both the divergence and curl of a vector field must be known
in order to specify the field uniquely. The curl of a vector field A is the vector circulation density of
A, expressed in Cartesian coordinates as:

∇×A = x̂(
∂Az
∂y
− ∂Ay

∂z
) + ŷ(

∂Ax
∂z
− ∂Az

∂x
) + ẑ(

∂Ay
∂x
− ∂Ax

∂y
)

A non-zero curl corresponds to the existence of spatial variations in the vector field in a direction
perpendicular to the field itself. The curl of vector field A is related to its circulation (i.e., its line
integral around a closed contour C) via the Stokes theorem:

∮
C A · dl =

∫
S(∇×A) · dS.

• Note that:

– ∇ · ∇ ×A = 0 for any vector field A

– ∇×∇φ = 0 for any scalar field φ

– ∇×∇×A = ∇(∇ ·A)−∇2A for any A

• All static electric fields are curl-free, i.e., ∇×E = 0. Correspondingly, the circulation of static electric
fields must be zero:

∮
C E ·dl = 0. Fields obeying these conditions are known as “conservative fields".

• Based on the second vector identity above, all static electric fields can be expressed in terms of a
scalar function V , where E = −∇V . Here, V is known as the electrostatic potential in [V]. Note
that E points in the direction from high to low potential and is perpendicular to contours of constant
potential (“equipotential surfaces"). Given E, the potential drop VA − VB between two points A and
B can be found by taking a line integral of E along any path from A to B:
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VA − VB =

∫ A

B
dV =

∫ A

B
∇V · dl = −

∫ A

B
E · dl =

∫ B

A
E · dl

Note that the integral
∫ B
A E · dl represents the work done by the field E per unit charge moved

from A to B. Thus, for conservation of energy to hold,
∫ B
A E · dl = −

∫ A
B E · dl, so that

∮
E · dl = 0,

as required for conservative fields.

• In static situations (i.e., when ρ is time-independent) and in situations when the electric permittivity
ε is homogeneous (not spatially varying), Gauss’ Law for E reduces to the Poisson’s equation:
∇2V = −ρ/ε. In the absence of static free charges, Poisson’s equation reduces to Laplace’s equation:
∇2V = 0. Note that the solution to Laplace’s equation in Cartesian coordinates must be a function
V that is linearily dependent on x, y, or z, and the corresponding electric field must be constant.

• Electrostatics allows us to develop concepts such as capacitance, conductance, and resistance which
are useful to describe both distributed and lumped circuits.

– The capacitance C is equal to the net amount of charge Q moved between two uncharged
conductors divided by the resulting potential drop V (C = Q/V [F]).

– If a current I [A/m] flows between the two conductors, the conductanceG is defined asG = I/V
[S].

– The resistance is defined as the reciprocal of the conductance: R ≡ 1/G [Ω].

For distributed circuits, we will be most concerned with the above parameters per unit length along
the line, which are denoted by C, G, and R, respectively.
– An idealized parallel plate transmission line (T.L.) consists of a pair of perfectly conducting

plates having width W separated by a perfect dielectric of thickness d (fringing effects at the
edges of the plates can be neglected if W � d). With this geometry, C = εW/d and G = σW/d.

– For a co-axial cable geometry with inner and outer cylindrical radii a and b, respectively, C =
ε(2π/ ln(b/a)) and G = σ(2π/ ln(b/a))

– In the above configuration, W/d and 2π/ ln(b/a) are the geometric factor GF specific to that
geometry. In general (for arbitrary geometries with different geometric factors), C = ε (GF ) and
G = σ (GF ).

• A charge carrier moving at a constant velocity (i.e., a steady current) generates magnetic flux
density B (in units of [Wb/m2] or [T]). The (infinitesimal) magnetic flux density dB generated at
a radius r by an infinitesimal current element Idl in a vacuum is along the direction Idl × r̂ and is
given by the Biot-Savart Law: dB = µ0(Idl×r̂)

4πr2
, where µ0 ≈ 4π × 10−7 [H/m] is the permeability

of free space. The total field generated by a steady current distribution can be found by using the
Biot-Savart Law in superposition for each infinitesimal current element in the distribution. Note that
the Biot-Savart Law is analogous to Coulomb’s Law.

• The static form of Ampere’s Law restates the Biot-Savart Law by relating the magnetic intensity
vector H ≡ B/µ0 [A/m] (in a vacuum) to volumetric current density J [A/m2]. In integral form,
Ampere’s Law states that the magnetomotive force around a closed contour C equals the flux of
current density (i.e., total current) crossing any (open) surface S bounded by C due to the motion of
free charges through the surface:

∮
C H · dl =

∫
S J · dS (static case). Note that the direction of the

contour C and the unit surface vector dS must adhere to the right hand rule. It is wise to construct
the Amperian loop C to exploit the symmetry of the current distribution in order to simplify the
evaluation of the surface integral in the LHS of the equation. In differential form, Ampere’s Law
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states that ∇×H = J (static case). You should be familiar with using Ampere’s Law to derive the
magnetic field generated by simple, steady current distributions, including line currents (in terms of
I [A]), surface currents (in terms of Js [A/m]) and symmetric volumetric currents.

• Gauss’ Law for B expresses the experimental finding that magnetic fields have no point sources
(unlike electric fields). In integral form, the law states that the magnetic flux through a closed surface
S equals zero:

∮
B · dS = 0. In differential form, the law states that the divergence of B must be

zero: ∇ ·B = 0.

• Magnetic fields inside magnetic materials:

– Magnetic materials are characterized by the presence of bound, looping currents, which are
divergence free and do not contribute to charge accumulation. Such a looping current can
arise, for example, from the orbital motions of an electron around the atomic nucleus or from
the quantum mechanical electron spin. The magnetic dipole moment m of such a looping
current is given as m = IA n̂ in terms of the effective current I and area A of the loop. For a
magnetic material having Nd magnetic moments per unit volume, the magnetization M is the
volume density of magnetic dipole moments, M = Nd m [A/m]. The bound current density is
expressed as Jbound = ∇×M.

– Each magnetic moment produces its own B. Superposing all the magnetic moments inside a
magnetic material having uniform magnetization M yields a macroscopic secondary magnetic
field Bm, which when superposed with an external (applied) magnetic field B0 yields a total
field B = Bm + µ0M. The magnetic intensity vector is REDEFINED as H ≡ (1/µ0)B−M.

– In many magnetic materials, the magnetization M induced by an applied magnetic field B0 is
proportional to the total B, such that M = χmH, where χm is the magnetic susceptibility.
As a result, the magnetic flux density becomes B = µ0(1 + χm)H ≡ µ0µrH ≡ µH. In most
materials, χm << 1 (it can be positive or negative), though in ferromagnetic materials, it can
be larger though always postive.

• Magnetostatics allows us to develop the concept of inductance. The (self) inductance L of a current
loop is the ratio of the magnetic flux Φ =

∫
S B · dS through the surface bounded by the loop to

the current I. In general, the inductance per unit length L of an arbitrary configuration of current-
carrying loops is related to the magnetic permeability µ of the medium in terms of a geometric factor
GF , such that L = µ/GF . Note the similarity of this relation with that of capacitance per unit
length C as described above.

• Faraday’s Law in integral form states that the induced voltage or electromotive force (EMF or E)
around a loop C (i.e., E =

∮
C E · dl) equals the negative time rate of change of the magnetic flux

Ψ through any (open) surface S bounded by C. In differential form, Faraday’s Law is stated as
∇× E = −∂B

∂t . According to Lenz’s Law, if a conducting wire were placed along C, current would
flow in a direction that would oppose the change in the magnetic flux. Several situations give rise to
magnetically induced EMF, such as: (1) a static contour within a time-varying B, (2) a deforming
loop C (and thus surface area S) within a static B, (3) a rigid loop moving through a spatially varying
B, or (4) a rotating loop.

• Maxwell noted an asymmetry between Faraday’s and Ampere’s Laws and deduced that Ampere’s
Law as written above is incomplete under time-varying situations. In addition to currents due to free
charges, magnetomotive force around a closed loop C also can be induced by time-varying D through
any (open) surface S bounded by C. Thus, in time-varying situations, Ampere’s Law in integral
form becomes:

∫
C H ·dl =

∫
S J ·dS+ d

dt(
∫
S D ·dS), where D = εE [C/m2] is the displacement vector
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field. Note that the surfaces S for the integration of current due to free charges and displacement flux
must be the same. In differential form, Ampere’s Law becomes ∇×H = J + ∂D

∂t .

• Vector fields B and H will be continuous in space except across boundaries carrying non-zero surface
current density Js. Boundary conditions relating the fields on one side of the boundary (B1 and
H1) to fields on the other (B2 and H2) are given by:

n̂× (H1 −H2) = Js

n̂ · (B1 −B2) = 0

As with the boundary conditions for E and D (see above), n̂ is defined as the unit vector pointing
perpendicularly away from the boundary, and region 1 is defined to be on the side towards which n̂
is pointing. Note that the fields on both sides must be evaluated at the location of the boundary.
These equations imply that normal components of B are continuous while the tangential components
of B can be discontinuous if a surface current is present on the boundary AND/OR if the magnetic
permeabilities are different in the two materials.

– If the material on one side of the boundary is a perfect conductor, B must be set to zero there
(since EM fields cannot exist inside a perfect conductor) and thus no normal component can
exist on the other side. If a tangential component exists on the other side, free charges inside the
conductor must have moved to the surface to shield the interior of the conductor − thus Js 6= 0.

– If the materials on both sides of the boundary are perfect dielectrics, Js = 0 since free charges
do not exist within either medium.

• The law of charge conservation is an important corrolary to Maxwell’s equations which can be
derived from Gauss’ Law for E together with Ampere’s Law. This law states that the net current
due to a flow of free charges through a closed surface S equals the negative time rate of change of
the charge enclosed in the volume V bounded by S. Restating charge continuity in differential form
yields ∇ · J = −∂ρ

∂t .

• Together, Gauss’s Laws, Faraday’s Law, and Ampere’s Law comprise Maxwell’s equations, which
relate the field vectors to their source charge and current densities. To summarize, Maxwell’s equations
are written as follows for a linear material medium, where we distinguish between free and bound
charges in the formulation of charge and current densities ρ and J:

∇ ·D = ρfree
∇ ·B = 0

∇×E = −∂B
∂t

∇×H = Jfree + ∂D
∂t

Here, the displacement vector is defined as D ≡ ε0E+P = εE in terms of the uniform polarization
P = −∇·ρbound and the magnetic intensity vector is defined as H ≡ (1/µ0)B−M = (1/µ)B in terms
of the uniform magnetization M, where Jbound = ∂P/∂t+∇×M. In a vacuum, P = M = 0. We
typically drop the subscript free from ρ and J in the equations above, with the understanding that
bound charge and current descriptions are contained in the definitions for D and H.

• Under static conditions (i.e, ∂
∂t = 0), Maxwell’s equations decouple into two sets of two equations

governing electrostatics (stationary charges) and magnetostatics (steady currents), respectively. The
interdependence of E and H described by the time-dependent Maxwell’s equations implies the ex-
istence of electromagnetic (EM) waves which propagate away from their current source. Maxwell’s
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equations must be solved simultaneously to yield solutions for the components of E and B via the
electromagnetic wave equation, which is obtained by taking the curl of Faraday’s law and substi-
tuting from Ampere’s Law. Assuming that the waves are propagating in a homogeneous
(constant µ and ε), perfect dielectric (ρ = J = σ = 0), and that the wavefield is transverse and 1D
(plane) with E = x̂ Ex(z, t) generated by a current source on the z = 0 plane, the 3D wave equation
reduces to its x̂ component only:

∂2Ex
∂z2

= µε
∂2Ex
∂t2

.

– The solution to the 1D plane wave equation above is the linear superposition of two waveforms
f(t) and g(t) traveling in the ±ẑ directions, respectively (i.e., away from the source at z = 0
in both directions), which are weighted by constant coefficients A and B, such that Ex(z, t) =
Af(t − z/vp) + Bg(t + z/vp). In free, unbounded space, the phase speed vp of the propagating
EM wave is c = 1√

µ0ε0
≈ 3 × 108 m/s, while in a perfect dielectric medium, the propagation

speed is vp = 1√
µε ≤ c.

– For arbitrary plane wave orientations, Maxwell’s equations require that ê× ĥ is always along the
direction of wave propagation. For the electric field given above (E = x̂ Ex(z, t)) the associated
magnetic field must be given by H = ±ŷ Hy(z, t) since in this case x̂ × ±ŷ = ±ẑ. Maxwell’s

equations also imply that |E|/|B| = vp and that |E|/|H| = η where η =
√

µ
ε is the intrinsic

impedence of the material medium in [Ω]. In free space, η = η0 ≈ 120π. The constant of
integration which results from solving for B or H from E via Faraday’s Law represents a DC
(background) magnetic field which is set to zero when no DC magnetic field is present.

– The functional forms of f(t) and g(t), together with the coefficients A and B, are governed by
the magnitude and time dependence of the surface current source Js(t). Maxwell’s equations in
integral form show that Af(t) = Bg(t) = η

2Js(t). For a current sheet at z = 0 with arbitrary
time varying current density Js(t) pointing in the −x̂ direction, the solution to the 1D plane
wave equation is:

E(z, t) =

{
x̂ η

2Js(t−
z
vp

) z > 0

x̂ η
2Js(t+ z

vp
) z < 0

(1)

H(z, t) =

{
ŷ 1

2Js(t−
z
vp

) z > 0

−ŷ 1
2Js(t+ z

vp
) z < 0

(2)

Note that in general, E(z, t) is anti-parallel to Js and has even symmetry around the sheet, while
H(z, t) is perpendicular to E (such that ê× ĥ = v̂p) and has odd symmetry around the sheet.

– For help visualizing plane EM wave propagation from various current sheet sources, click the
link on the course website to view some time-lapse animations.

• Cosinusoidal surface current variation Js(t) = J0 cos(ωt) generates cosinusoidal EM waves which have
the same angular frequency ω [rad/s]. Cosinusoidal traveling waves are characterized by a length
scale (i.e., wavelength) λ [m] and timescale (i.e., period) T [s], where ω = 2π/T . The traveling
waveform cos(ω(t ∓ z

vp
)) is typically written in terms of the wave number β ≡ 2π/λ [rad/m] as

cos(ωt ∓ βz), where vp ≡ ω/β. Note that the linear frequency f can be expressed in terms of the
period or the angular frequency: f = 1/T = ω/2π [1/s] or [Hz]. Thus, ω, T , and f describe the time
variation of the wave, while λ and β describe its spatial variation. Note that λf = ω/β = vp.
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– Phasor notation can be a convenient way to express cosinusoidally varying fields. For example,
the phasor Ẽ of wave field E = ê E0 cos(ωt ∓ βz + θ) = Re{ê E0 e

j(ωt∓βz+θ)} = Re{Ẽ ejωt} is
given as Ẽ = ê E0 e

j(∓βz+θ) = ê E0 e
∓jβzejθ. Note that phasors have a direction and magnitude

and only depend on spatial coordinates.

• Plane EM waves transport energy, momentum, and angular momentum along their direction of prop-
agation. The transported energy per unit time (i.e. power) per unit area in the wave plane (i.e.,
power density) is known as the Poynting flux S, where S = E ×H [W/m2]. Note that S is in the
direction of wave propagation.

– Energy is also stored in the fields themselves, at a volumetric density of 1
2D ·E [J/m3] and 1

2B ·H
[J/m3] for the electric and magnetic fields, respectively. Stored power density is thus the time
rate of change of the stored energy density.

– Electromagnetic energy can also be injected or dissipated locally (through the work required to
accelerate conduction electrons, for example). The rate of energy injection/dissipation per unit
volume is given as J ·E [W/m3].

– Together, the power density stored in the fields, the power density dissipated (or produced)
locally, and the flux of transported power density must equal zero, such that electromagnetic en-
ergy is conserved. The equation describing this conservation of energy is known as the Poynting
theorem. Locally (i.e., applying to a point in space), this equation is given by:

∇ · S + ∂
∂t(

1
2D ·E + 1

2B ·H) + J ·E = 0 [W/m3]

For a volumetric region in space bounded by a closed surface, the Poynting theorem becomes
(via the divergence theorem):∫

S S · dS + d
dt

∫
V (12D ·E + 1

2B ·H) dV +
∫
V J ·E dV = 0 [W]

– The Poynting flux of time-varying EM waves will also be time-varying. The time-averaged
Poynting flux 〈S〉 is defined as 1

T

∫ T
0 S dt. Using phasor notation, the time-averaged Poynting

vector is 〈S〉 = 1
2Re{Ẽ× H̃∗} in terms of the complex conjugate of H̃, denoted H̃∗. Note that

the time-average of the stored power density (time-rate change of energy density) is zero.

• Maxwell’s equations as formulated above can be used to derive the 1D (plane) wave equation for an
arbitrary material media having a finite, non-zero conductivity σ. In this case (unlike the case of
wave propagation in a perfect dielectric described above), the conduction current term in Ampere’s
Law cannot be neglected. For linear plane waves given by E = x̂Ex(z, t) and H = ±ŷHy(z, t), the
wave equation becomes

∂2Ex
∂z2

= µσ
∂Ex
∂t

+ µε
∂2Ex
∂t2

In phasor notation (for cosinusoidal current sources), the plane wave equation is given as:

∂2Ẽx
∂z2

= (jω)2µ(ε− j σ
ω

)Ẽx

The solution to the phasor wave equation is a superposition of damped co-sinusoidal waves. In
phasor notation, the general solution is Ẽx = E0 e

∓γzejφ, where γ = jω
√
µ(ε− jσ/ω) is known

as the propagation constant and φ is the (constant) phase of the field at the initial condition
t = z = 0. Defining γ ≡ α+ jβ in terms of the attenuation constant α [1/m] and phase constant
β [rad/m], the phasor electric field becomes Ẽ = x̂E0e

∓αze∓jβzejφ.
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– The propagation speed of the wave is vp = ω/β (same as for waves in a perfect dielectric).
However, in conducting materials β is generally not linearily proportional to ω, such that vp is
a function of ω. As a result, waves of different frequency travel at different speeds, a property
known as dispersion.

– The amplitude of the wave, E0 e
∓αz, is attenuated exponentially as it propagates through a

material medium. The penetration depth δ is defined as the distance the wave must travel
for its amplitude to decay by a factor of 1/e. Thus, δ = 1/α [m]. As with waves through any
medium, the wavelength is λ = 2π/β; however, note that in the case where the wave amplitude
attenuates, the wavelength now corresponds to the distance between two alternate zero crossings
and not between two consecutive maxima.

– The corresponding magnetic field in a conducting material (σ 6= 0) is determined by the same
two criteria as with TEM waves in a perfect dielectric (where σ = 0). These are: (1) ĥ = v̂p × ê
(= ∓ẑ × x̂ = ±ŷ in this case) and (2) |E|/|H| = η. However, in a conducting medium, the
intrinsic impedance is redefined to be: η =

√
µ/(ε− j σω ) [Ω]. Thus, for H = ±ŷHy, H̃y =

±(E0/η) e∓αze∓jβzejφ. Since η is in general a complex number, it can be written as η = |η|ejτ ,
such that H̃y = (E0/|η|) e∓αze∓jβzejφe−jτ . Note that in a material medium having a non-zero
conductivity and thus complex impedence η, the magnetic field is out of phase with respect to
the electric field by an amount τ . In general, τ = (1/2) tan−1(σ/ωε). The quantity σ/ωε is
known as the loss tangent and is used to determine whether the material is a good or poor
conductor:

∗ In a perfect dielectric, σ = 0, such that γ = jω
√
µε = jβ and η =

√
µ/ε. Note that EM

waves do not attenuate as they propagate though a perfect dielectric (since α = 0) and E
and B are in phase (since η is purely real, τ = 0).

∗ If σ/ωε� 1, then the material is a poor conductor, also known as an imperfect dielectric.
In that case, γ ≈ (σ/2)

√
µ/ε+ jω

√
µε and η ≈

√
µ/ε(1 + jσ/2ωε). Note that β and Re{η}

are the same as for a perfect dielectric.

∗ If σ/ωε � 1, then the material is a good conductor and γ ≈ (1 + j)
√
ωµσ/2 and η ≈√

jωµ/σ =
√
ωµ/σejπ/4. Note that in a good conductor, α = β and τ = π/4.

– The properties of the material medium (σ, µ, and ε) can be determined from knowledge of the
propagation parameters of an EM wave traveling through the material, where σ = Re{γ/η},
µ = γη/jω and ε = (1/ω)Im{γ/η}.

• EM wave polarization describes how the “tip" of the electric field vector at a given point in space
changes position as a function of time.

– Co-sinusiodal plane waves E1 = x̂ cos(ωt∓ βz + θ1) and E2 = ŷ cos(ωt∓ βz + θ2) are linearily
polarized in the x̂ and ŷ directions, respectively.

– The weighted superposition E = aE1 + bE2 = x̂Ex+ ŷEy is also linearily polarized if θ1−θ2 = 0
or π (that is, if Ex and Ey are in phase or phase opposition).

– For a = b AND θ1 − θ2 = ±π/2, then E is circularly polarized, such that at a given location
in space, E rotates in a circle with increasing time. If the rotation is counterclockwise when
looking FROM the direction of propagation (i.e., the direction of rotation and the direction
of propagation satisfy the right-hand rule), then E is right-handed circularly polarized. If the
rotation is clockwise, E is left-handed circularly polarized.

– If none of the above criteria are fulfilled, then E is elliptically polarized.Note that elliptically
polarized waves also rotate, such that the elliptical polarization can be right or left handed
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following the same convention as circularly polarized waves.

• When a TEM wave propagating through an arbitrary material medium (characterized by µ1, ε1, and
σ1) encounters a region of differing intrinsic impedance (η2), the wave in general will both reflect
from and transmit through the boundary. Maxwell’s boundary conditions are used to determine the
amplitude of reflected and transmitted electric wavefields (Er and Et, respectively) relative to that
of the incident electric wavefield Ei.

For normal incidence of linearily polarized TEM waves, the ratio Er/Ei evaluated at the boundary
equals Γ ≡ η2−η1

η2+η1
, a dimensionless scaling factor known as the reflection coefficient. The ratio

Et/Ei evaluated at the boundary equals τ ≡ 2η2
η2+η1

, a dimensionless scaling factor known as the
transmission coefficient. Note that 1 + Γ = τ .

– If the wave is incident on a perfect conductor (such that η2 = 0), the wavefield will reflect
completely: Γ = −1 and τ = 0. Total reflection of an incident cosinusoidal wavefield off of a
normal planar boundary yields a standing wave which carries no net energy.

– If the wave is incident on a region having η2 = η1 (i.e., matched impedance), the wavefield
will transmit completely: Γ = 0 and τ = 1.

• Guided wavefields confined to a region between two parallel conducting plates (possible if plate
width W is much larger than their separation d) will generate charge and current variations on the
interior surfaces of the plates facing one another in accordance with Maxwell’s boundary condition
equations. Alternatively, applying a time-varying surface current or charge density at some location
on the plates will in turn generate propagating guided waves.

Assuming that the TEM field between the plates is linearily polarized with E = Ex(z, t)x̂ and B =
By(z, t)ŷ, we can express the fields in terms of voltage between the plates V ≡ Exd and surface
current on the bottom plate I ≡ HyW . Neglecting loss terms (i.e., assuming that the conductor
and dielectrics are perfect materials), Ampere’s and Faraday’s laws can be rewritten in terms of the
circuit parameters (L and C) to obtain geometry-independent equations known as telegrapher’s
equations:

−∂V
∂z

= L∂I
∂t

and −∂I
∂z

= C ∂V
∂t

The telegrapher’s equations can be combined to obtain a wave equation:

∂2V

∂z2
− LC ∂

2V

∂t2
= 0

with superposed ±ẑ-direction propagating wave solutions: V (z, t) = f(t ∓ z/vp) and I(z, t) =
±(1/Z0)f(t ∓ z/vp). The phase speed of the waves is vp ≡ 1/

√
LC = 1/

√
µε (such that voltage

and current waveforms travel at the same speed as the associated fields inside the perfect dielectric
between the plates). The ratio of the voltage and current of each waveform (i.e., V +/I+ or V −/I−),
is known as the characteristic impedance of the T.L. and denoted Z0 ≡

√
L/C = η 1

GF , in terms
of the geometric factor GF (see p.4). Note that the telegrapher’s equations are valid in general for
other types of two-wire T.L.s provided that appropriate (geometry-dependent) expressions for L and
C are used.

• The total power transported in the T.L. waveguide is given by the Poynting vector E×H times the
cross section of the waveguide. For the parallel plate geometry described above, power transported
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in the ẑ direction reduces to P (z, t) = V (z, t)I(z, t). Hence, the familiar circuit theory formula for
time-averaged power 〈P 〉 = (1/2)Re{V I∗} (in terms of voltage and current phasors V and I) will
also hold in sinusoidal steady-state problems.

• For a T.L. having characteristic impedance Z0, phase speed vp, and length l, the voltage and current
variations (i.e., general, unbounded solutions to the telegrapher’s equations) are given as

V (z, t) = V +(t− z

vp
) + V −(t+

z

vp
)

I(z, t) =
1

Z0

[
V +(t− z

vp
)− V −(t+

z

vp
)

]
where V +(t) and V −(t) are forward propagating (in the +ẑ-direction towards the load) and backwards
propagating (in the −ẑ-direction towards the generator) voltage waveforms.

• When the above general T.L. is terminated by a resistive load RL:

– Voltage and current waveforms are initially scaled by a factor denoted τg, known as the injection
coefficient. They will propagate down the line towards the load end, where they will be scaled
(by a factor ΓL) and reflected off of the load if its impedance RL does not match the characteristic
impedance Z0 of the T.L. Waveforms propagating down the line towards the source end will
similarly be scaled (by Γg) and reflected at the source if its internal resistance does not equal
Z0.

– Familiar lumped circuit boundary conditions at the load and source ends are used to determine
the injection and reflection coefficients:

∗ The boundary condition at the load end requires that V (l, t)/I(l, t) = RL. This condition
implies that

ΓL ≡
RL − Z0

RL + Z0
is the load reflection coefficient.

Note that at the source V −(t) is also a time-shifted (by delay 2l/vp) replica of V +(t) after
scaling by ΓL.

∗ At the source end (z = 0) (having a source voltage fi(t) and internal resistance Rg), the
boundary condition requires that V (0, t) = f(t) − Rg I(0, t). This condition implies that

Γg ≡
Rg − Z0

Rg + Z0
is the source reflection coefficient

and τg =
Z0

Rg + Z0
is the injection coefficient.

– A short-circuit has RL = 0, such that ΓL = −1 and the voltage reflected at the load end is
the negative of the incident (forward-propagating) voltage (thus voltage across the short circuit
is zero).

– An open circuit has RL = ∞, such that ΓL = 1 and the reflected voltage is equal to the
incident voltage (thus current through the open circuit is zero).

– A matched load has RL = Z0, such that ΓL = 0 and no reflection at the load occurs. Similarly,
when Rg = Z0, the internal resistance at the source end is matched to Z0 and no reflection (of
the backwards propagating wave) occurs at the source.

• The zero-state impulse response of the T.L. can by found by solving for V +(z, t) and V −(z, t)
when the source voltage is a delta function: fi(t) = δ(t). For the above T.L. with resistive load (and
thus ΓL defined as above), the steady-state impulse response is found to be an infinite summation of
amplitude-scaled and time-shifted replicas of the delta function input:
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V +(z, t) = τg
∑

(ΓLΓg)
nδ(t− z

v
− n 2l

vp
)

V −(z, t) = τgΓL
∑

(ΓLΓg)
nδ(t+

z

v
− (n+ 1)

2l

vp
)

(the summation above is over the number n of reflections off of the source, ranging from 0 to ∞).
Note that the total voltage at any location z on the line at a given time t is the superposition of both
waveforms given above. When fi(t) is an arbitrary waveform instead of δ(t), the voltage waveforms
are found by convolving the impulse response functions with fi(t), which yields the general zero-
state voltage solution. Since the impulse response is a sum of delta functions, the convolution
results in a sum of appropriately delayed fi(t).

• Bounce diagrams are a useful time-domain analysis tool for calculating scaling factors and time
delays following successive reflections from the load and source ends of a T.L. Note that similar (but
different!) bounce diagrams can be constructed for current as well as voltage, where the coefficients
of current amplitude I±n are the same as those for voltage (V ±n ), but scaled by an additional factor of
± 1
Z0

.

Bounce diagrams are also useful for analyzing multiple T.L. circuits; coefficients for voltage waveform
reflection and transmission between T.L. segments connected in series, which have characteristic

impedances Zj and Zk, respectively, are given by Γjk =
Zk − Zj
Zk + Zj

and τjk = 1 + Γjk.

• For co-sinusoidal sources f(t) = Re{F̃ ejωt}, the steady-state T.L. responses V (z, t) and I(z, t) are also
co-sinusoidal and best handled using phasor techniques. It is conventional in sinusoidal steady-state
T.L. analysis to define a new spatial coordinate d = −z, where d = 0 at the load end and d = l at the
generator end, where l is the length of the T.L. Phasors Ṽ and Ĩ (note that the phasor tilde notation
is dropped from here on) have steady-state solutions expressed as the superpositions of forward and
reverse propagating waves.

V (d) = V +ejβd + V −e−jβd and I(d) =
V +ejβd

Z0
− V −e−jβd

Z0

where β = ω/vp = ω
√
LC and V ±/I± = ±Z0 = ±

√
L/C.

– At the load end (d = 0) having arbitrary (complex) impedance ZL, the reflected voltage waveform
is V − = ΓLV

+, where ΓL ≡ ZL−Z0
ZL+Z0

is the load reflection coefficient.

– V (d) and I(d) are related in terms of the line impedance:

Z(d) ≡ V (d)/I(d) = Z0
1 + ΓLe

−j2βd

1− ΓLe−j2βd
= Z0

1 + Γ(d)

1− Γ(d)
[Ω]

where Γ(d) = ΓLe
−j2βd is known as the generalized reflection coefficient. The impedance at

the input terminal of the line (i.e., Z(d = l)) is known as the input impedance and frequently
denoted Zin. Note that line admittance is the reciprocal of impedance Y (d) = 1/Z(d) and
that Y (d) = Z(d+ λ

4 ).

– At the generator end of the T.L. (d = l), the boundary condition that V (l) = F Z(l)
Zs+Z(l)

and
I(l) = V (l)/Z(l) (where F is the source voltage phasor and Z(l) is the input impedance of the
line) can be used to solve for V + in terms of F .
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• A short-circuited T.L. (having ZL = 0 such that ΓL = −1) is characterized by:

– Phasor voltage V (d) = V +(ejβd − e−jβd) = j2V + sin(βd). Note that VL ≡ V (d = 0) = 0.

– Phasor current I(d) = Y02V
+ cos(βd)

– Phasors V (d) and I(d) describe complete standing waves on a short-circuited T.L., where the
amplitude of cosinusoidal time-variation of line current and voltage itself varies cosinusoidally
along the line. Voltage nulls occur at the load and at λ

2 intervals from the end. Current nulls
occur at d = λ

4 from the load and at λ
2 intervals from the first minimum along the line.

– Line impedance Z(d) = jZ0 tan(βd) is purely reactive and has a λ
2 periodicity. Note that at

d = λ
4 (or βd = π

2 ), Z(d) = ∞, such that the line impedance of a shorted line has become that
of an open circuit. In other words, a translation in distance along the line by d = λ

4 transforms
the short into an open. Another translation by d = λ

4 will transform it back into a short.

• An open-circuited T.L (having ZL =∞ such that ΓL = 1) is characterized by:

– Phasor voltage V (d) = V +(ejβd + e−jβd) = 2V + cos(βd)

– Phasor current I(d) = jY02V
+ sin(βd), Note that IL ≡ I(d = 0) = 0.

– Like the short-circuited line, phasors V (d) and I(d) describe complete standing waves along
the line with λ

2 periodicity and d = λ
4 spacing between voltage and current nulls.

– The line admittance of an open line is Y (d) = I(d)/V (d) = jY0 tan(βd).

• A lossless T.L. of length l having open/short terminations on both ends can sustain unforced voltage
and current standing waves at a set of discrete resonant frequencies.

– Resonance for Zin = Z(l) = 0 or Y (l) = ∞ is known as series resonance (regardless of the
load).

– Resonance for Zin = Z(l) = ∞ or Y (l) = 0 is known as parallel resonance (regardless of the
load).

Series or parallel resonance frequencies can also be sustained when the open or shorted stub T.L.s are
used in series or parallel networks with other circuit elements, though the resonance frequencies may
be shifted.

• T.L. segments of half- and quarter-wave electrical lengths have unique properties regarding the trans-
formation between voltage, current, and impedance.

– The half-wave transformer inverts the algebraic sign of the voltage and current inputs at the
load end (and vice versa): Vin = −VL and Iin = −IL, such that the line impedance Z(d) is
identical at both ends.

– The quarter-wave transformer advances the voltage and current such that Vin = jILZ0

and Iin = jVL/Z0. The line impedances at each end are related by ZinZL = (Z0)
2. Since

Zin = Vin/Iin, we can express the current at the load end simply in terms of the input voltage
and characteristic impedance:

IL = −j Vin
Z0

Note that the current at the load end is independent of load impedance ZL, a property known
as current forcing. This is the principle behind corporate ladder networks.
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• GENERAL CASE: For a T.L terminated by an arbitrary load impedance ZL, the load reflection
coefficient ΓL = ZL−Z0

ZL+Z0
is arbitrary and generally complex, so that it can be written in terms of its

magnitude and phase: ΓL = |ΓL|ejθL . In that case:

– Line voltage becomes V (d) = V +ejβd(1 + Γ(d)) = V +ejβd(1 + |ΓL|ej(θL−2βd)).
– Voltage maxima occur where |V (d)|max = |V +|(1 + |ΓL|) and

voltage minima occur where |V (d)|min = |V +|(1 − |ΓL|). Note that the phase angle of Γ(d) is
θ = θL − 2βd.

– The standing wave ratio (VSWR) relates the maximum and minimum voltages on the line

as VSWR =
|V (d)|max
|V (d)|min

=
1 + |ΓL|
1− |ΓL|

. The VSWR ranges from 1 (for ΓL = 0, i.e., a matched line),

to ∞ (for |ΓL| = 1, i.e., the load is purely reactive).

– Note that |ΓL| = VSWR−1
VSWR+1 .

– Normalized line impedance is z(d) = Z(d)
Z0

=
1 + Γ(d)

1− Γ(d)
≡ r(d) + jx(d). Note that the

normalized impedance at the load is z(0) ≡ zL =
1 + ΓL
1− ΓL

.

• The parameters Γ(d) and z(d) = r + jx (and/or y(d) = 1/z(d)) are related graphically in a Smith
Chart, which represents the complex plane of Γ(d), with the Re{Γ(d)} axis along the horizontal.
The numerical value for Γ(d) at a point along a T.L. segment can be represented in complex polar
coordinates on the S.C. in terms of its magnitude |Γ(d)| = |ΓL| and phase angle θ = θL − 2βd.

– The center of the chart corresponds to |ΓL| = 0, thus VSWR=1, and thus matched conditions.

– The perimeter of the chart is the unit circle on the complex Γ(d) plane and corresponds to:
|ΓL| = 1, VSWR = ∞, and purely reactive loads.

– For arbitrary loads (on lossless lines), |Γ(d)| is a constant between 1 and 0, such that VSWR
is a finite constant that is greater than 1. Thus, starting from the load end of the T.L. at an
arbitrary location on the S.C. and moving toward the generator end, the generalized reflection
coefficient progresses clockwise in a circle around the origin, since the phase angle θ decreases
with increasing d while |Γ(d)| stays constant. Counterclockwise rotation of Γ(d) would thus
correspond to decreasing distance from the load.

– The quantity |1 + Γ(d)| is the proportionality factor that relates |V (d)| to |V +|. Since this
proportionality term is maximized at Γ(d) = |ΓL|, voltage maxima occur on a S.C. at the
intersection of the constant Γ circle and the positive Re{Γ(d)} axis. Similarly, voltage minima
occur on a S.C. at the intersection of the constant Γ circle and negative Re{Γ(d)} axis.

– Every full rotation around the S.C. corresponds to a translation in electrical length of λ/2 (thus
a half rotation corresponds to λ/4). Electrical length along the transmission line is indicated
as a function of phase angle along a perimeter axis on the S.C. Note that voltage minima and
maxima occur every λ/4 from each other.

Curved grid lines of constant reactance r and resistance x are superimposed on the complex Γ(d)
plane of the Smith Chart. The horizontal axis corresponds to purely real (resistive) impedance, while
the unit circle perimeter corresponds to purely imaginary (reactive) impedance. The normalized line
impedance z(d) at a point along the T.L. (along the constant Γ circle on the S.C.) can be determined
from the unique intersection of r and x contours at that location on the S.C. This mapping makes
the following calculations much easier to solve graphically using a S.C. than algebraically:
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– Relate dmin (the electrical length between the load and the nearest voltage minimum) to θL and
thus the load reflection coefficient ΓL

– Derive VSWR = z(dmax), the (purely real) line impedance at voltage maxima.

– Calculate normalized line admittance y(d) from the intersection of contour lines at a point 180◦

from z(d) around the constant Γ circle, since y(d) = z(d+ λ/4).

• Time-average power transported on a T.L. from generator to load is written equivalently as

P = 1
2Re{V (d)I∗(d)} =

|V +|2

2Z0
− |V

−|2

2Z0

Because the T.L. is lossless, the power at the input must equal the power transported along the line
which must equal the power delivered to the load, so that:

P = 1
2Re{V (0)I∗(0)} = 1

2Re{V (d)I∗(d)} = 1
2Re{V (l)I∗(l)}

• Typically, generators are designed to operate into loads matching the generator internal resistance
Zg. While it is generally easy to select T.L. having Z0 = Zg, frequently the load impedance ZL 6= Z0.
Impedance matching can be achieved by inserting an impedance matching network in front of the
load in order to achieve a VSWR=1 on the main line segment between the generator and the network.

– Quarter wave matching of resistive loads involves inserting a quarter-wavelength T.L. in
series between the end of the T.L. and the load. A match will be achieved if the characteristic
impedance of the QWT ZT =

√
Z0ZL.

– Quarter wave matching of reactive loads involves inserting a quarter-wavelength T.L.
in series at some distance dq from the load end of the T.L. A match will be achieved when
the characteristic impedance of the QWT is ZT =

√
Z0Z(dq). Since we require ZT to be a

purely real (resistive) impedance, dq is chosen so that Z(dq) is purely resistive (occurs at voltage
maxima/minima). Purely real impedances lie along the horizontal axis of the S.C., so finding
dq is thus a matter of finding the electrical length (or phase difference) between the load and a
voltage maximum/minimum.

– Single stub matching involves inserting a shorted or open T.L. of length ls in parallel at a
distance ds from the load end of the main line. A match will be achieved when Γ(ds) = 0, or
when the input admittance at d = ds (i.e., treating the main line w/ load and stub in parallel)
is y(ds) = 1 + j0. Since y(ds) is the sum of the admittances of the two sections in parallel, it can
be written (assuming both the T.L. and the stub have the same characteristic impedance Z0)
as y(ds) = y′(ds) + ys(ls), where y′(ds) = g′(ds) + jb′(ds) is the input admittance of the main
T.L. segment with its arbitrary load ZL and ys(ls) = jbs(ls) is the purely susceptive (imaginary)
admittance of the stub evaluated at its input end. Thus a match will be achieved when g′(ds) = 1
and bs(ls) = −b′(ds).
The steps to solving a single stub matching problem using a Smith Chart are as follows:

∗ Find zL on the Smith Chart and draw the constant Γ circle around the origin through zL.

∗ Find yL, located 180◦ around the constant Γ circle from zL.

∗ Transform yL in a CLOCKWISE direction to a location where g = 1 (where the constant
Γ circle intersects the unit conductance circle). The admittance at this point is y′(ds) =
1 + jb′(ds). Note that there will be two solutions (one for each of the two intersections).
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∗ Find the electrical length ds as the distance between yL and the desired intersection using
the WTG axis on the outer perimeter of the S.C.

∗ Note the susceptance b′(ds) on the main line at the intersection, and find the negative of
that susceptance on the constant Γ circle of the stub section (i.e., the unit circle). This
admittance here is ys(ls) = jbs(ls).

∗ Transform ys(ls) to the load admittance yL of the stub. If the stub is shorted, yL = ∞
whereas if the stub is open yL = 0. Note that this translation corresponds to COUNTER-
CLOCKWISE rotation.

∗ Find the length of the stub ls as the electrical length between ys(ls) and yL using the WTL
axis on the perimeter of the S.C..
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