1. (a) (1 point) The vector wave field $\mathbf{E}(x, t)$ is given by

$$
\mathbf{E}(y, t)=80 \Delta\left(\frac{t+y / c}{\tau}\right) \hat{z}\left[\frac{\mathrm{~V}}{\mathrm{~m}}\right] .
$$

(b) (1 point) The associated wave field $\mathbf{H}(x, t)$ is

$$
\mathbf{H}(y, t)=-\frac{80}{\eta_{o}} \Delta\left(\frac{t+y / c}{\tau}\right) \hat{x}\left[\frac{\mathrm{~A}}{\mathrm{~m}}\right] .
$$

(c) (2 points) The Poynting vector is

$$
\mathbf{S}=\mathbf{E} \times \mathbf{H}=-\frac{6400}{\eta_{o}} \Delta^{2}\left(\frac{t+y / c}{\tau}\right) \hat{y}\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right]
$$

and its maximum value is

$$
\max (|\mathbf{E} \times \mathbf{H}|)=\frac{6400}{\eta_{o}} \approx \frac{160}{3 \pi}\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right] .
$$

(d) (2 points) The location of the peak of $\mathbf{E} \times \mathbf{H}$ evolves according to

$$
\frac{t+y / c}{\tau}=0 \quad \rightarrow \quad y=-c t
$$

(e) (2 points) The field E_{z} given by

$$
\left.E_{z}(y, t)\right|_{y=1000 \mathrm{~m}}=80 \triangle\left(\frac{t+3.33 \times 10^{-6} \mathrm{~s}}{50 n \mathrm{~s}}\right)\left[\frac{\mathrm{V}}{\mathrm{~m}}\right]
$$

It is plotted in the following figure:

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
(f) (2 points) The field H_{y} given by

$$
\left.H_{x}(y, t)\right|_{t=-200 n \mathrm{~s}}=-\frac{80}{\eta_{o}} \Delta\left(\frac{-60+y}{15}\right)\left[\frac{\mathrm{A}}{\mathrm{~m}}\right]
$$

It is plotted in the following figure:

2. (a) (2 points) The propagation velocity is given by

$$
v=\frac{c}{4}=7.5 \times 10^{7}\left[\frac{\mathrm{~m}}{\mathrm{~s}}\right] .
$$

(b) (4 points) If $\epsilon=\epsilon_{r} \epsilon_{o}$ and $\mu=\mu_{r} \mu_{o}$, then the intrinsic impedance η can take the following form

$$
\eta=\sqrt{\frac{\mu}{\epsilon}}=\sqrt{\frac{\mu_{r}}{\epsilon_{r}}} \eta_{o}
$$

while the wave propagation velocity v can be written as

$$
v=\frac{1}{\sqrt{\epsilon \mu}}=\frac{c}{\sqrt{\epsilon_{r} \mu_{r}}} .
$$

Using the results of parts (a) and (b) we find that

$$
\epsilon_{r}=16, \mu_{r}=1
$$

(c) (2 points) Since $E_{x}=\eta H_{y}$ we have that

$$
u\left(t-\frac{z}{c / 4}\right)=\eta H_{y o} u\left(t-\frac{4 z}{c}\right)
$$

with $\eta=\frac{1}{4} \eta_{0}$, then $H_{y o}=\frac{1}{30 \pi}$
(d) (2 points) Finally, since $E_{y}=-\eta H_{x}$ (recall that the propagation direction is $\hat{z}=-\hat{y} \times \hat{x}$, hence the minus sign), we have that

$$
g\left(t-\frac{z}{c / 4}\right)=-10 \times\left(\frac{c}{4} t-z\right) \operatorname{rect}\left(\frac{t-\frac{4 z}{c}+2 n s}{4 n s}\right),
$$

then

$$
g(t)=-\frac{5 c}{2} \operatorname{trect}\left(\frac{t+2 n s}{4 n s}\right) .
$$

3. The pulse of sheet current $\mathbf{J}_{s}(t)=\hat{y} 8 \operatorname{trect}\left(\frac{t}{\tau}\right) \frac{\mathrm{A}}{\mathrm{m}}$ will produce magnetic and electric fields. The magnetic field is: (it's direction can be verify using the right-hand-rule for Ampere's law $\oint_{C} \mathbf{H}$. $\left.d \mathbf{l}=I_{C}\right)$

$$
\begin{aligned}
\mathbf{H}^{ \pm}(z, t) & = \pm \frac{1}{2} J_{s o}\left(t \pm \frac{z}{c}\right) \hat{x}\left[\frac{\mathrm{~A}}{\mathrm{~m}}\right] \\
& = \pm 4\left(t \mp \frac{z}{c}\right) \operatorname{rect}\left(\frac{t \mp \frac{z}{c}}{\tau}\right) \hat{x}\left[\frac{\mathrm{~A}}{\mathrm{~m}}\right] \quad \text { for } z \gtrless 0,
\end{aligned}
$$

whereas the electric field is given by

$$
\mathbf{E}^{ \pm}(x, t)=-\frac{\eta_{o}}{2} J_{s o}\left(t \mp \frac{z}{c}\right) \hat{y}=-4 \eta_{o}\left(t \mp \frac{z}{c}\right) \operatorname{rect}\left(\frac{t \mp \frac{z}{c}}{\tau}\right) \hat{y}\left[\frac{\mathrm{~V}}{\mathrm{~m}}\right] \quad \text { for } z \gtrless 0
$$

where $\eta_{o}=120 \pi \Omega$ is the intrinsic impedance of free-space.
(a) (8 points) The fields are given by

$$
\begin{gathered}
\left.E_{y}(z, t)\right|_{z=-600 m}=-4 \eta_{o}(t-2000 n \mathrm{~s}) \operatorname{rect}\left(\frac{t-2000 n \mathrm{~s}}{80 n \mathrm{~s}}\right)\left[\frac{\mathrm{V}}{\mathrm{~m}}\right] \\
\left.E_{y}(z, t)\right|_{z=600 m}=-4 \eta_{o}(t-2000 n \mathrm{~s}) \operatorname{rect}\left(\frac{t-2000 n \mathrm{~s}}{80 n \mathrm{~s}}\right)\left[\frac{\mathrm{V}}{\mathrm{~m}}\right] \\
\left.H_{x}(z, t)\right|_{z=-600 m}=-4(t-2000 n \mathrm{~s}) \operatorname{rect}\left(\frac{t-2000 n \mathrm{~s}}{80 n \mathrm{~s}}\right)\left[\frac{\mathrm{A}}{\mathrm{~m}}\right] \\
\left.H_{x}(z, t)\right|_{z=600 m}=4(t-2000 n \mathrm{~s}) \operatorname{rect}\left(\frac{t-2000 n \mathrm{~s}}{80 n \mathrm{~s}}\right)\left[\frac{\mathrm{A}}{\mathrm{~m}}\right]
\end{gathered}
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.

(b) (4 points) The fields are given by

$$
\begin{gathered}
\left.E_{y}(z, t)\right|_{t=120 n \mathrm{~S}}=-4 \eta_{0}\left(120 n \mathrm{~s} \mp \frac{z}{c}\right) \operatorname{rect}\left(\frac{120 n \mathrm{~s} \mp \frac{z}{c}}{80 n \mathrm{~s}}\right)\left[\frac{\mathrm{V}}{\mathrm{~m}}\right] \\
\left.H_{x}(z, t)\right|_{t=120 n \mathrm{~S}}= \pm 4\left(120 n \mathrm{~s} \mp \frac{z}{c}\right) \operatorname{rect}\left(\frac{120 n \mathrm{~s} \mp \frac{z}{c}}{80 n \mathrm{~s}}\right)\left[\frac{\mathrm{A}}{\mathrm{~m}}\right]
\end{gathered}
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.

(c) (2 points) Following the hint given in the problem, we can write

$$
\begin{aligned}
-\mathbf{J}_{s} \cdot \mathbf{E} & =-\left(\hat{y} 8 t \operatorname{rect}\left(\frac{t}{\tau}\right)\right) \cdot\left(-4 \eta_{0} t \operatorname{rect}\left(\frac{t}{\tau}\right) \hat{y}\right) \\
& =32 \eta_{o} t^{2} \operatorname{rect}^{2}\left(\frac{t}{\tau}\right)\left[\frac{\mathrm{W}}{\mathrm{~m}^{2}}\right] .
\end{aligned}
$$

Then, the TEM wave density energy is

$$
\begin{aligned}
\int-\mathbf{J}_{s} \cdot \mathbf{E} d t & =\int 32 \eta_{o} t^{2} \operatorname{rect}^{2}\left(\frac{t}{\tau}\right) d t \\
& =\int_{-\tau / 2}^{\tau / 2} 32 \eta_{o} t^{2} d t=\left.\frac{32}{3} \eta_{o}\left[t^{3}\right]\right|_{-\tau / 2} ^{\tau / 2} \\
& =\frac{8}{3} \eta_{o} \tau^{3} \approx 5.14 \times 10^{-19}\left[\frac{\mathrm{~J}}{\mathrm{~m}^{2}}\right]
\end{aligned}
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
4. (a) (3 points) For the plane wave described by $\mathbf{E}_{1}=3 \cos (\omega t-\beta z) \hat{y}\left[\frac{\mathrm{~V}}{\mathrm{~m}}\right]$:
i. The magnetic field \mathbf{H} should satisfy $\mathbf{H}=-\frac{\mathbf{E} \times \hat{\beta}}{\eta}$, where $\hat{\beta}$ is the unit vector parallel to the propagation direction. Then, we can find the expressions for \mathbf{H} field of the given plane wave as

$$
\mathbf{H}_{\mathbf{1}}=-\frac{3}{\eta_{o}} \cos (\omega t-\beta z) \hat{x}\left[\frac{\mathrm{~A}}{\mathrm{~m}}\right] .
$$

ii. The instantaneous power flow density is given by the Poynting vector $\mathbf{S}=\mathbf{E} \times \mathbf{H}$. Therefore, the instantaneous power that crosses some surface A is given by $P=$ $\int_{A} \mathbf{S} \cdot d \mathbf{A}$, where $d \mathbf{A} \equiv \hat{n} \cdot A$. Therefore, the Poynting vector is found as

$$
\mathbf{S}_{1}=\mathbf{E}_{1} \times \mathbf{H}_{1}=\frac{9}{\eta_{o}} \cos ^{2}(\omega t-\beta z) \hat{z}\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right],
$$

and expression for instantaneous power that crosses a $1 \mathrm{~m}^{2}$ area (i.e. $A=1 \mathrm{~m}^{2}$) in the $x y$-plane from $-z$ to $+z$ may be written as

$$
P_{1}=\frac{9}{\eta_{o}} \cos ^{2}(\omega t-\beta z)[\mathrm{W}] .
$$

iii. We can calculate the time-average of the Poynting vector using the trigonometric identity: $\cos ^{2} \theta=\frac{1}{2}(1+\cos (2 \theta))$. Based on the fact that the time average of the cosine wave is zero $\left(\frac{1}{T} \int_{T} \cos (\omega t) d t=0\right)$, we can write

$$
\left\langle\mathbf{S}_{1}\right\rangle=\left\langle\frac{9}{\eta_{o}} \cos ^{2}(\omega t-\beta z) \hat{z} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right\rangle=\frac{9}{2 \eta_{o}} \hat{z}\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right] .
$$

Therefore, the average power that crosses some surface A is given by

$$
\left\langle P_{1}\right\rangle=\left\langle\mathbf{S}_{1}\right\rangle \cdot \hat{n} A=\frac{9}{2 \eta_{o}}[\mathrm{~W}] .
$$

(b) (3 points) For the plane wave described by $\mathbf{E}_{2}=E_{o}(\cos (\omega t-\beta z) \hat{x}+\sin (\omega t-\beta z) \hat{y})\left[\frac{\mathrm{V}}{\mathrm{m}}\right]$:
i. The propagation direction is $\hat{\beta}_{2}=\hat{z}$. Thus, the magnetic field \mathbf{H}_{2} is given by

$$
\mathbf{H}_{2}=\frac{E_{o}}{\eta_{o}}(\cos (\omega t-\beta z) \hat{y}-\sin (\omega t-\beta z) \hat{x})\left[\frac{\mathrm{A}}{\mathrm{~m}}\right] .
$$

ii. The Poynting vector is given by

$$
\begin{aligned}
\mathbf{S}_{2} & =\mathbf{E}_{2} \times \mathbf{H}_{2} \\
& =E_{o}(\cos (\omega t-\beta z) \hat{x}+\sin (\omega t-\beta z) \hat{y}) \times \frac{E_{o}}{\eta_{o}}(\cos (\omega t-\beta z) \hat{y}-\sin (\omega t-\beta z) \hat{x}) \\
& =\frac{E_{o}^{2}}{\eta_{o}}\left(\cos ^{2}(\omega t-\beta z) \hat{z}+\sin ^{2}(\omega t-\beta z) \hat{z}\right)=\frac{E_{o}^{2}}{\eta_{o}} \hat{z}\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right] .
\end{aligned}
$$

Therefore, the instantaneous power crossing the area $A=1 \mathrm{~m}^{2}$ is

$$
P_{2}=\frac{E_{o}^{2}}{\eta_{o}}[\mathrm{~W}] .
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
iii. The Poynting vector is constant in time, thus the time-average power is

$$
\left\langle P_{2}\right\rangle=\frac{E_{o}^{2}}{\eta_{o}}[\mathrm{~W}] .
$$

(c) (3 points) For the plane wave described by $\mathbf{H}_{3}=\cos \left(\omega t+\beta z+\frac{\pi}{3}\right) \hat{x}-\sin \left(\omega t+\beta z-\frac{\pi}{6}\right) \hat{y}\left[\frac{\mathrm{~A}}{\mathrm{~m}}\right]$:
i. The electric field \mathbf{E} should satisfy $\mathbf{E}=\eta(\mathbf{H} \times \hat{\beta})$ where $\hat{\beta}=-\hat{z}$ in this case. Then, we can find the expressions for the \mathbf{E} field of the given plane wave as

$$
\mathbf{E}_{3}=\eta_{o}\left(\cos \left(\omega t+\beta z+\frac{\pi}{3}\right) \hat{y}+\sin \left(\omega t+\beta z-\frac{\pi}{6}\right) \hat{x}\right)\left[\frac{\mathrm{V}}{\mathrm{~m}}\right] .
$$

ii. The Poynting vector is given by

$$
\begin{aligned}
\mathbf{S}_{3} & =\mathbf{E}_{3} \times \mathbf{H}_{3} \\
& =-\eta_{o}\left(\cos ^{2}\left(\omega t+\beta z+\frac{\pi}{3}\right) \hat{z}+\sin ^{2}\left(\omega t+\beta z-\frac{\pi}{6}\right) \hat{z}\right) \\
& =-\eta_{o}\left(\cos ^{2}\left(\omega t+\beta z+\frac{\pi}{3}\right) \hat{z}+\cos ^{2}\left(\omega t+\beta z+\frac{\pi}{3}\right) \hat{z}\right) \\
& =-2 \eta_{o} \cos ^{2}\left(\omega t+\beta z+\frac{\pi}{3}\right) \hat{z}\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right] .
\end{aligned}
$$

Therefore, the instantaneous power crossing the area $A=1 \mathrm{~m}^{2}$ is

$$
P_{3}=-2 \eta_{o} \cos ^{2}\left(\omega t+\beta z+\frac{\pi}{3}\right)[\mathrm{W}] .
$$

iii. The time-average power crossing a $1 \mathrm{~m}^{2}$ area is

$$
\left\langle P_{3}\right\rangle=-\eta_{o}[\mathrm{~W}] .
$$

(d) (3 points) For the plane wave described by $\mathbf{H}_{4}=\cos (\omega t-\beta x) \hat{z}+\sin (\omega t-\beta x) \hat{y}\left[\frac{\mathrm{~A}}{\mathrm{~m}}\right]$:
i. The propagation direction is $\hat{\beta}_{4}=\hat{x}$. Thus, the electric field \mathbf{E}_{4} is given by

$$
\mathbf{E}_{4}=\eta_{o}(\cos (\omega t-\beta x) \hat{y}-\sin (\omega t-\beta x) \hat{z})\left[\frac{\mathrm{V}}{\mathrm{~m}}\right]
$$

ii. The wave is propagating in the $+x$ direction, therefore there is no flux of energy flowing into the z direction. Therefore, the instantaneous power crossing a $1 \mathrm{~m}^{2}$ area in the $x y$-plane from $-z$ to z is

$$
P_{4}=0[\mathrm{~W}] .
$$

iii. The time-average power crossing a $1 \mathrm{~m}^{2}$ area in the $x y$-plane from $-z$ to z is also

$$
\left\langle P_{4}\right\rangle=0[\mathrm{~W}] .
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
5. (10 points) The current produced is proportional to $\left|\mathbf{E}_{1}+\mathbf{E}_{2}\right|^{2}$, hence it can be described by

$$
I=A\left|\mathbf{E}_{1}+\mathbf{E}_{2}\right|^{2}=A E_{o}\left(\cos \left(\omega_{1} t-\beta_{1} z\right)+\cos \left(\omega_{2} t-\beta_{2} z\right)\right)^{2} .
$$

Since we are not interested in the z dependence, we may very well just ignore it by setting $\mathrm{z}=0$. Also remember:

$$
\begin{gathered}
\cos (a)^{2}=\frac{\cos (2 a)+1}{2} \\
\cos (a+b)+\cos (a-b)=2 \cos (a) \cos (b)
\end{gathered}
$$

Therefore:

$$
\begin{aligned}
\left.I\right|_{z=0} & =\left.A E_{o}\left[\cos \left(\omega_{1} t-\beta_{1} z\right)+\cos \left(\omega_{2} t-\beta_{2} z\right)\right]^{2}\right|_{z=0} \\
& =A E_{o}\left[\cos \left(\omega_{1} t\right)+\cos \left(\omega_{2} t\right)\right]^{2} \\
& =A E_{o}\left[\cos ^{2}\left(\omega_{1} t\right)+\cos ^{2}\left(\omega_{2} t\right)+2 \cos \left(\omega_{1} t\right) \cos \left(\omega_{2} t\right)\right] \\
& =A E_{o}\left[\frac{2+\cos \left(2 \omega_{1} t\right)+\cos \left(2 \omega_{2} t\right)}{2}\right] \\
& +A E_{o}\left[\cos \left(\left(\omega_{1}-\omega_{2}\right) t\right)+\cos \left(\left(\omega_{1}+\omega_{2}\right) t\right)\right]
\end{aligned}
$$

Hence, the frequencies produced are $2 \omega_{1}, 2 \omega_{2}, \omega_{1}+\omega_{2}$ and $\left|\omega_{1}-\omega_{2}\right|$.

