
ECE 329 Fields and Waves I

Homework 7

Instructors: Chen, Goddard, Shao

Due March 9, 2023, 11:59 PM

Homework Policy:

• Write your name and NetID on top of every page. This habit will help you in exams in the
event of having loose page(s).

• Tag all the questions in Gradescope. Failure to do so results in a 5 points deduction.

• Cheating results in ZERO and 50% reduction in HW average on first offense. A 100% reduction
in HW average on second offense.

• Please show detailed process for each problem instead of just an answer. No partial credits
would be given otherwise. All answers should include units wherever appropriate.

• No late HW is accepted.

• Regrade requests are available one week following grade release.

You are allowed to work with anyone else, but the work you submit should only belong
to you. Note that if you have knowledge of a violation of the Honor Code, then you are
obligated to report it. By submitting this homework, you are agreeing to the Honor
Code: “I have neither given nor received unauthorized aid on this homework, nor have
I concealed any violations of the Honor Code.”

Question Points Score

1 10

2 15

3 10

4 10

5 10

6 5

Total: 60
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1. (10 points) Verify that vector identity

H · ∇ × E− E · ∇ ×H = ∇ · (E×H)

holds for E = 5ẑe−αy and H = 10x̂e−αy by expanding both sides of the identity. Treat α as a
real constant.

You should download the table of vector identities from the ECE 329 web site and examine the
list to familiarize yourself with the listed identities — they are widely employed in electromag-
netics as well as in other branches of engineering such as fluid dynamics.

2. Charge conservation states that the net outward flux of current density from a volume V
through its bounding surface S equals the time rate of decrease of net charge contained within
the volume: ∮

S

J · dS = − d

dt

∫
V

ρdV

Note that applying the Divergence theorem yields the differential form:

∇ · J = −dρ

dt

(a) (6 points) Calculate
∮
S
J · dS for the surface of a cubic volume V = 27m3 centered at the

origin if the current density is J = 4x(y − 1)2x̂+ 6yŷ + 8x2y2ẑA/m2.

(b) (3 points) Use dimensional analysis to determine the physical units of the coefficients 4,
6, and 8 used in defining J.

(c) (2 points) Is the total charge contained in the cube increasing, decreasing, or neither?

(d) (4 points) Find the charge density at the origin, ρ(0, 0, 0, t) as a function of time, if
ρ(0, 0, 0, 0) = 0.

3. Consider a homogeneous conductor where J = σE and σ = 24π × 105 S/m.

(a) (2 points) Use Gauss’s law ∇ · E = ρ
ϵo

and the continuity equation ∇ · J = −∂ρ
∂t

to derive
the differential equation:

∂ρ

∂t
+

σ

ϵo
ρ = 0

for the charge density ρ.

(b) (3 points) Find the solution of the differential equation above for t > 0 if at t = 0 the
charge density is ρ(x, y, z, 0) = 2ρ0sin(100z) C/m

3 over all space, where ρ0 is positive.

(c) (2 points) Find, using the properties of the conductor, the general expression and numer-
ical value of the characteristic time over which the charge density ρ decreases in time by a
factor of 1/e.

(d) (3 points) Find the current density J(x, y, z, t) by using the continuity equation, knowing
that ρ is a function of z and t only and assuming that there are no external applied E
fields.
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4. In this problem, we will study the propagation of waves in free space. In a source-free region
where J = 0 and ρ = 0, Maxwell’s equations reduce to:

∇ · E = 0

∇× E = −∂B

∂t
∇ ·B = 0

∇×B = µ0ϵ0
∂E

∂t

(1)

For E = x̂Ex(z, t), where Ex(z, t) is an arbitrary function of coordinates z and t only,

(a) (1 point) Show that Gauss’ Law is satisfied.

(b) (2 points) Determine ∂B
∂t

in terms of Ex(z, t).

(c) (2 points) Determine ∇× (∇× E) in terms of Ex(z, t).

(d) (3 points) Use your results for (a)-(c) to derive the wave equation:

∂2Ex

∂z2
− µ0ϵ0

∂2Ex

∂t2
= 0

(e) (2 points) Using dimensional (unit) analysis, relate µ0ϵ0 appearing in the wave equation
in (d) to the speed of propagation of Ex(z, t) in the ẑ- direction.

5. Let E = x̂Ex(z, t) as in problem 4 above, where Ex(z, t) = E0cos(ωt ∓ βz + ϕ) and E0 (am-
plitude), ω (radian frequency), β (wavenumber), and ϕ (phase shift) are positive real scalars.
These fields describe waves polarized in the x̂ direction and propagating in the ±ẑ directions,
respectively.

(a) (2 points) Show that the specified Ex satisfies the wave equation derived above if:

β = ω
√
µ0ϵ0 =

ω

c

where c ≈ 3× 108 m/s is the speed of light in free space.

(b) (6 points) Substitute the specified Ex into Faraday’s law and solve for B(z, t) assuming

that B(0, 0) = ±Ex(0,0)
c

ŷ. Show that your answer can be expressed as B = ±Ex

c
ŷ (be

careful about maintaining the correct order for the upper and lower signs). Is there any
restriction on the value for ϕ?

(c) (2 points) Use B = µ0H to show that H = ±Ex

η0
ŷ in terms of an appropriately defined

constant η0. What is η0 in terms of µ0 and ϵ0?

6. (5 points) Create a concept map that connects all the magnetostatic concepts: current I, cur-
rent density J, magnetic field H, magnetic flux density B, magnetization M, and vector poten-
tial A. For example, the concept map for charge Q, charge density ρ, and displacement field D
is:

Q
Q=

∫
ρvoldV←−−−−−→ ρ

∇·D=ρvol←−−−−→ D
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