
ECE 329 SPRING 2023 Homework 4 Solution

1. (a) (5 points) We can write E as

E =
Q

4πϵ0

(
x̂
x

r3
+ ŷ

y

r3
+ ẑ

z

r3

)
.

Therefore,

∇× E =
Q

4πϵ0

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
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∂
∂y

∂
∂z

x
r3

y
r3

z
r3

∣∣∣∣∣∣
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4πϵ0
x̂

[
∂

∂y

( z

r3

)
− ∂

∂z

( y

r3

)]
+

Q

4πϵ0
ŷ

[
∂

∂z

( x

r3

)
− ∂

∂x

( z

r3

)]
+

Q

4πϵ0
ẑ

[
∂

∂x

( y

r3

)
− ∂

∂y

( x

r3

)]
.

Take the calculation of ∂
∂y

(
z
r3

)
for example:

∂

∂y

( z

r3

)
=

∂

∂y

 z(√
x2 + y2 + z2

)3

 = − 3zy(√
x2 + y2 + z2

)5 .

Similarly, we can obtain the other partial differentials. Finally,

∇× E = x̂
Q

4πϵ0

− 3zy(√
x2 + y2 + z2

)5 +
3yz(√

x2 + y2 + z2
)5


+ŷ

Q

4πϵ0

− 3xz(√
x2 + y2 + z2

)5 +
3zx(√

x2 + y2 + z2
)5


+ẑ

Q

4πϵ0

− 3yx(√
x2 + y2 + z2

)5 +
3xy(√

x2 + y2 + z2
)5


= 0.

(b) (5 points) In this spherically symmetric situation,

∇V =
∂V

∂r
r̂.

Therefore,

E = −∇V = −∂V

∂r
r̂ = −

(
− Q

4πϵ0r2

)
r̂ =

Q

4πϵ0r2
r̂.
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We know that

V (r)− V (∞) =

∫ ∞

r

E · dl

From part a), we know ∇ × E = 0, which means that the above integration is path-
independent. Thus, we can simply take the path to be a straight line from point A to
r = ∞:

V (r)− V (∞) =

∫ ∞

r

E · dr

=

∫ ∞

r

Q

4πϵ0r2
r̂ · r̂dr

=

∫ ∞

r

Q

4πϵ0r2
dr

= 0−
(
− Q

4πϵ0r

)
=

Q

4πϵ0r
.

By plugging in V (∞) = 0, we have

V (r) =
Q

4πϵ0r
.
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2. A vacuum diode consists of a cathode in the z = 0 plane and an anode in the z = d plane. The
electric field between the the plates is given by E = −ẑ 4V0

3d
( z
d
)1/3 and the field outside the of the

gap region is zero.

(a) (4 points) Electric field is the negative gradient of V(z),

−∇V = E = −4V0

3d
(
z

d
)1/3ẑ

V (z) =
∫ z

0
−E(z′)dz′ + Vb

= V0(
z
d
)4/3 + Vb

By applying the given boundary conditions V(d) = 4 and V(0) = 0,

V (z) = 4(
z

d
)4/3

Solve V(1) = 0.25, we can get that,
d = 8 [m]

(b) (4 points) For volumetric charge density,

ρ = ∇ ·D = ϵo∇ · E = −4ϵoV0

9d2
(
z

d
)−2/3

Evaluating at z=5d/8 ,

ρ(5d/8) = −5−
2
3 ϵo
9

[C/m3]

(c) (2 points) The surface charge density on the anode ( we choose n̂ = −ẑ) is

ρs(d) = n̂ ·D(d) = −ẑ · ϵo(−
4V0

3d
(1)1/3ẑ)

Plug in the constants and we have

ρs(d) =
2

3
ϵo [C/m

2]
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3. (a) (2 points) Since the electric field is in the −x̂ direction, we can tell that the plate at x
= 10 m is holding positive charge density, and the plate at x = 0 m is holding negative
charge density.

(b) (4 points) By superposing the electric fields generated by the two plates, we know that
outside of the region between the two plates, the electric field is 0. Now, since we already
know the charge density of the plate at x = 0 m, by applying boundary condition at x =
0 m, we can find ϵ1

ρs = n̂ · (D+ −D−) = x̂ · (−2ϵ1x̂− 0) = −2ϵ1 = −5ϵo

ϵ1 =
5

2
ϵo

and similarly applying the boundary condition at x = 10 m ,

ρs = n̂ · (D+ −D−) = −x̂ · (−ϵ2
2
x̂− 0) =

ϵ2
2

= 5ϵo

ϵ2 = 10ϵo

Notice that D =− 5ϵ0 everywhere between the plates and thus is continuous at x = 2 m

(c) (2 points) Since both of the slabs are perfect dielectrics, there should be no charge at the
interface at x = 2,

ρ = n̂ · (D+ −D−)

= x̂ · [(−1

2
x̂10ϵo − (−2x̂5

2
ϵo)]

= 0

(d) (4 points) From E = −∇V , we know that the potential in the two regions should have
the form of V (x) = mx+ k. For 0 ≤ x ≤ 2 ,

E = −∇V = −2x̂

The potential should have the form of

V (x) = 2x+ A

And for 2 ≤ x ≤ 10,

V (x) =
x

2
+B

Apply boundary condition at x =10 m, V(10) = 0, we can get B = -5. Then, the potential
should be continuous at x=2, so we can have

4 + A = −4
A = −8

The potential is
V (x) = 2x− 8, 0 ≤ x ≤ 2

V (x) =
x

2
− 5, 2 ≤ x ≤ 10
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(e) (1 point) Inside the two regions, we have ∇2V (x) = ∂2

∂z2
V (x) = 0, which means that

Laplace’s equation is satisfied inside the two regions. However, at the interface x=2 m, the
derivative of V (x) is not differentiable, so Laplace’s equation is not satisfied.

(f) (2 points) From (d) , we can know the the voltage drop between the 2 conducting plates

is 8 [V], and Capacitance
Area

= Q/Area
V

= ρ
V

C

A
=

5ϵ0
8

[F/m2]
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4. Since the field is in −ẑ direction, we can know that the plate at z = 0 m is holding a surface
charge density of −2 [C/m2]. The electric field associated with surface charge density of ρs is

E = ẑ
ρs
2ϵo

sgn(z)

The field between the two plates is E = − 2

ϵo
ẑ [V/m] and E = 0 [V/m] elsewhere

(a) (7 points) The displacement in the gap

D = ϵo
−2

ϵ0
ẑ = −2ẑ [C/m2]

By definition,
D = ϵE = ϵoE+P

The gap is occupied by vacuum, ϵ = ϵo

P = 0 [C/m2]

From E = −∇V , we can know V (z) = 2z
ϵ0
+ C . Given that V (0) = 0,

V (z) =
2z

ϵ0
[V]

Voltage drop between the two copper plates is

V (2)− V (0) =
4

ϵ0

so capacitance per unit area is
C

A
=

ϵ0
2
[F/m2]

(b) (5 points) The displacement does not change even if vacuum is replaced by pure water
because the charge densities on the plates are the same. So

E =
−2

ϵ
= − 2

80ϵo
= − 1

40ϵo
ẑ

D = ϵoE+P

−2ẑ = − 1

40
ẑ +P

P = −79

40
ẑ [C/m2]

From E = −∇V , we can know V (z) = z
40ϵ0

+ C . Given that V (0) = 0,

V (z) =
z

40ϵ0
[V]

Voltage drop between the two copper plates is

V (2)− V (0) =
1

20ϵ0
[V]

so capacitance per unit area is
C

A
= 40ϵ0 [F/m

2]
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(c) (3 points) If the conductivity of the material between the parallel plates becomes different
from zero then E = D = 0 and P = 0 as the steady-state equilibrium is reached. Also, the
whole conducting system is at the same potential, so V = 0. This happens because in a
conducting medium all equilibrium fields vanish after the rearrangements of the net charge
on the bounding surface. In this particular case, the salt water shorts out the original field
between the plates. Since there is no potential difference between the two plates, and the
two plates do not carry any charge, the capacitance is undefined.
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5. We will look at each region at a time.

(a) (4 points) For r ≤ a , it is a perfect conductor. For a conductor, there is no electric field
within it when equilibrium is reached, and all the charges should be located on the surface.
However, since the region a < r < b is also made of conductor, the electric field should
also be 0 within it. According to Gauss’ Law,

∮
S
D · ds = Qenclosed, the charge enclosed in

a spherical Gausian surface with radius R, which a < R < b, is 0. So we can conclude for
r ≤ a,

D1 = 0 [
C

m2
] E1 = 0 [

V

m
] P1 = 0 [

C

m2
] ρs|r=a = 0 [

C

m2
]

(b) (4 points) As explained above, for a < r < b

D2 = 0 [
C

m2
] E2 = 0 [

V

m
] P2 = 0 [

C

m2
]

This region is surround by a shell of perfect dielectric material, so the charge, Q = −2 [C],
is sitting on the interface at r=b. The charge density at the interface is

ρs|r=b =
Q

A
=

−2

4πb2
=

−1

2πb2
[
C

m2
]

(c) (4 points) For b < r < c, this shell is made of perfect dielectric material with ϵ = 4ϵo.
Apply Gauss’ Law,

∮
S
D · ds = Qenclosed, with the Gaussian surface being a sphere with

radius R and b < R < c ∮
S
D · ds = Qenclosed

D3 · 4πR2 = −2

We have

D3 =
−1

2πR2
r̂ [

C

m2
]

E3 =
D3

ϵ
=

−1

8ϵoπR2
r̂ [

V

m
]

P3 = D3 − ϵoE3 =
−3

8πR2
r̂ [

C

m2
]

With r̂ being the radial direction unit vector. Since this region is made of perfect dielectric
material,

ρs|r=c = 0 [
C

m2
]

(d) (4 points) For r > c, again, apply Gauss’ Law,
∮
S
D · ds = Qenclosed, with the Gaussian

surface to be a sphere with radius R and R > c∮
S
D · ds = Qenclosed

D44πR
2 = −2

We get

D4 =
−1

2πR2
r̂ [

C

m2
]
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E4 =
D4

ϵ
=

−1

2ϵoπR2
r̂ [

V

m
]

And ϵ = ϵo, so

P4 = 0r̂ [
C

m2
]

We can also calculate the surface charge density at r = c using the boundary condition.
At r = c, D3 = D4, so ρs|r=c = r̂ · (D4 −D3) = 0 [ C

m2 ]
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6. Bonus Question:

(a) (3 points) Use the constitutive equation for the electric field and flux:

D = ϵE

if the permittivity is a tensor, we can treat the electric field and flux as vectors: Dx

Dy

Dz

 =

 2 0 −1
0 2 0
−1 0 2

 ϵ0 ×

 Ex

Ey

Ez


By letting E = E0ŷ = (0, E0, 0), then D = (0, 2ϵ0E0, 0) . To find the polarization P,we use

D = ϵ0E0+P

P = ϵ0E0ŷ

In this case, the electric field and flux are pointing to the same direction. The polariztion P
is the same the free space flux ϵE0. The reason is because the entities in the second column
of the tensor are zeros for x and z directions. It means that this material polarized in y
direction under electric field in y direction. Therefore, the electric dipoles are orientated
in the same direction with the applied electric field.

(b) (3 points) Using the same equation in part (a), but letting E = E0x̂ = (E0, 0, 0), we find:

D = 2ϵ0E0x̂− ϵ0E0ẑ

P = ϵ0E0x̂− ϵ0E0ẑ

In this case, the electric field and flux are pointing to different directions. The polarization
due to the electric dipoles is then pointing to a different direction under the applied electric
field.

(c) (4 points) This problem is equivalent to finding the eigenvectors of the given matrix (ten-
sor). If D and E are pointing to the same direction, we can write D = λE, where λ is a
scalar number. Then:

ϵE = λE

This is an eigenvalue problem: λ is the eigenvalue and E is the eigenvector. We can only
find three eigenvectors for this problem since ϵ is a 3× 3 matrix and it is non-singular. We
can calcuate the eigenvectors of ϵ:

E1 = −
√
2

2
x̂−

√
2

2
ẑ[a.u.]

E2 = ŷ[a.u.]

E3 = −
√
2

2
x̂+

√
2

2
ẑ[a.u.]

Then if E in one of the above direction, D and E will be in the same direction.
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