1. Consider the 3 D vectors

$$
\begin{aligned}
& \mathbf{A}=3 \hat{x}+\hat{y}-2 \hat{z}, \\
& \mathbf{B}=\hat{x}+\hat{y}-\hat{z}, \\
& \mathbf{C}=\hat{x}-2 \hat{y}+3 \hat{z},
\end{aligned}
$$

(a) (1 point) The vector

$$
\mathbf{D}=\mathbf{A}+\mathbf{B}=4 \hat{x}+2 \hat{y}-3 \hat{z} .
$$

(b) (1 point) The vector

$$
\mathbf{A}+\mathbf{B}-4 \mathbf{C}=4 \hat{x}+2 \hat{y}-3 \hat{z}-4(\hat{x}-2 \hat{y}+3 \hat{z})=1 \hat{0} y-15 \hat{z}
$$

(c) (2 points) The vector magnitude

$$
|\mathbf{A}+\mathbf{B}-4 \mathbf{C}|=\sqrt{10^{2}+15^{2}}=18.03 .
$$

(d) (2 points) The unit vector \hat{u} along vector

$$
\begin{gathered}
\mathbf{A}+2 \mathbf{B}-\mathbf{C}=(3 \hat{x}+\hat{y}-2 \hat{z})+2(\hat{x}+\hat{y}-\hat{z})-(\hat{x}-2 \hat{y}+3 \hat{z})=4 \hat{x}+5 \hat{y}-7 \hat{z} \\
|\mathbf{A}+2 \mathbf{B}-\mathbf{C}|=\sqrt{4^{2}+5^{2}+7^{2}}=9.49 \\
\hat{u}=\frac{\mathbf{A}+2 \mathbf{B}-\mathbf{C}}{|\mathbf{A}+2 \mathbf{B}-\mathbf{C}|}=\frac{4 \hat{x}+5 \hat{y}-7 \hat{z}}{9.49}=0.42 \hat{x}+0.53 \hat{y}-0.74 \hat{z}
\end{gathered}
$$

(e) (2 points) The dot product

$$
\mathbf{A} \cdot \mathbf{B}=(3 \hat{x}+\hat{y}-2 \hat{z}) \cdot(\hat{x}+\hat{y}-\hat{z})=3 \times 1+1 \times 1+(-2) \times(-1)=6 .
$$

(f) (2 points) The cross product

$$
\begin{aligned}
\mathbf{B} \times \mathbf{C} & =(\hat{x}+\hat{y}-\hat{z}) \times(\hat{x}-2 \hat{y}+3 \hat{z}) \\
& =\hat{x} \times(\hat{x}-2 \hat{y}+3 \hat{z})+\hat{y} \times(\hat{x}-2 \hat{y}+3 \hat{z})-\hat{z} \times(\hat{x}-2 \hat{y}+3 \hat{z}) \\
& =(-2 \hat{z}-3 \hat{y})+(-\hat{z}+3 \hat{x})-(\hat{y}+2 \hat{x}) \\
& =\hat{x}-4 \hat{y}-3 \hat{z}
\end{aligned}
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
2. (7 points) In the three cases, we have the same \mathbf{E} and \mathbf{B} at the origin, but different \mathbf{v}. Thus, we have different \mathbf{F}. In each case, \mathbf{v} and \mathbf{F} must satisfy $\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})$. Therefore, we have the following three equations

$$
\begin{cases}3 \hat{z} & =\mathbf{E} \\ \hat{z} & =\mathbf{E}+\hat{y} \times \mathbf{B} \\ 3 \hat{z}+4 \hat{y} & =\mathbf{E}+2 \hat{z} \times \mathbf{B}\end{cases}
$$

from which we obtain

$$
\begin{cases}\mathbf{E} & =3 \hat{z} \\ \hat{y} \times \mathbf{B} & =-2 \hat{z} \\ \hat{z} \times \mathbf{B} & =2 \hat{y}\end{cases}
$$

If we assume $\mathbf{B}=\hat{x} B_{x}+\hat{y} B_{y}+\hat{z} B_{z}$, then

$$
\begin{cases}\hat{y} \times\left(\hat{x} B_{x}+\hat{y} B_{y}+\hat{z} B_{z}\right) & =-2 \hat{z} \\ \hat{z} \times\left(\hat{x} B_{x}+\hat{y} B_{y}+\hat{z} B_{z}\right) & =2 \hat{y} .\end{cases}
$$

Further simplify into

$$
\left\{\begin{aligned}
-\hat{z} B_{x}+\hat{x} B_{z} & =-2 \hat{z} \\
\hat{y} B_{x}-\hat{x} B_{y} & =2 \hat{y} .
\end{aligned}\right.
$$

Therefore, we have

$$
\begin{cases}B_{x} & =2 \\ B_{y} & =B_{z}=0\end{cases}
$$

In summary, $\mathbf{E}=3 \hat{z}[\mathrm{~V} / \mathrm{m}]$ and $\mathbf{B}=2 \hat{x}\left[\mathrm{~Wb} / \mathrm{m}^{2}\right]$.
3. (13 points) Let us use $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ and S_{6} to denote the surfaces $x=0, x=1, y=0, y=$ $1, z=0$ and $z=1$, respectively. We consider S_{1} and S_{2} first. The unit vector on S_{1} pointing away from the volume is along $-\hat{x}$ direction, so we have

$$
\int_{S_{1}} J \cdot d S=\left.\int_{0}^{1} \int_{0}^{1}\left[z^{2}(\hat{x}+\hat{y}+\hat{z})\right]\right|_{x=0} \cdot(-\hat{x}) d y d z=-\frac{1}{3}[\mathrm{~A}] .
$$

For S_{2}, the unit vector pointing away from the volume is along $+\hat{x}$ direction, therefore

$$
\int_{S_{2}} J \cdot d S=\left.\int_{0}^{1} \int_{0}^{1}\left[z^{2}(\hat{x}+\hat{y}+\hat{z})\right]\right|_{x=1} \cdot(+\hat{x}) d y d z=\frac{1}{3}[\mathrm{~A}] .
$$

Similarly, for S_{3}, S_{4}, S_{5} and S_{6}, we can obtain

$$
\begin{aligned}
\int_{S_{3}} J \cdot d S & =\left.\int_{0}^{1} \int_{0}^{1}\left[z^{2}(\hat{x}+\hat{y}+\hat{z})\right]\right|_{y=0} \cdot(-\hat{y}) d x d z=-\frac{1}{3}[\mathrm{~A}] \\
\int_{S_{4}} J \cdot d S & =\left.\int_{0}^{1} \int_{0}^{1}\left[z^{2}(\hat{x}+\hat{y}+\hat{z})\right]\right|_{y=1} \cdot(+\hat{y}) d x d z=\frac{1}{3}[\mathrm{~A}] \\
\int_{S_{5}} J \cdot d S & =\left.\int_{0}^{1} \int_{0}^{1}\left[z^{2}(\hat{x}+\hat{y}+\hat{z})\right]\right|_{z=0} \cdot(-\hat{z}) d x d y=0[\mathrm{~A}] \\
\int_{S_{6}} J \cdot d S & =\left.\int_{0}^{1} \int_{0}^{1}\left[z^{2}(\hat{x}+\hat{y}+\hat{z})\right]\right|_{z=1} \cdot(+\hat{z}) d x d y=1[\mathrm{~A}]
\end{aligned}
$$

Therefore,

$$
\oint_{S} J \cdot d S=\sum_{i=1}^{6} \int_{s_{i}} J \cdot d S=1[\mathrm{~A}]
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
4. (10 points) We know $Q_{1}=8 \pi \varepsilon_{0} \mathrm{C}$, so $Q_{2}=-Q_{1} / 2=4 \pi \varepsilon_{0} \mathrm{C}$. The electric field at the point P_{3} is the superposition of those induced by Q_{1} and Q_{2}, namely

$$
\begin{aligned}
\mathbf{E}_{3} & =\sum_{i=1}^{2} \frac{Q_{i}}{4 \pi \varepsilon_{0}\left|r_{3}-r_{i}\right|^{2}} \cdot \frac{r_{3}-r_{i}}{\left|r_{3}-r_{i}\right|} \\
& =\frac{2}{|\hat{x}+\hat{y}|^{3}}(\hat{x}+\hat{y})-\frac{1}{|-\hat{x}+\hat{y}|^{3}}(-\hat{x}+\hat{y}) \\
& =\frac{3 \hat{x}+\hat{y}}{2 \sqrt{2}}[\mathrm{~V} / \mathrm{m}] .
\end{aligned}
$$

The electric field at the point P_{4} can be obtained in a similar way

$$
\begin{aligned}
\mathbf{E}_{4} & =\sum_{i=1}^{2} \frac{Q_{i}}{4 \pi \varepsilon_{0}\left|r_{4}-r_{i}\right|^{2}} \cdot \frac{r_{4}-r_{i}}{\left|r_{4}-r_{i}\right|} \\
& =\frac{2}{|\hat{x}+\hat{z}|^{3}}(\hat{x}+\hat{z})-\frac{1}{|-\hat{x}+\hat{z}|^{3}}(-\hat{x}+\hat{z}) \\
& =\frac{3 \hat{x}+\hat{z}}{2 \sqrt{2}}[\mathrm{~V} / \mathrm{m}] .
\end{aligned}
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
5. (10 points) Firstly, recall that divergence theorem states:

$$
\int_{V} \nabla \cdot \mathbf{F} d V=\int_{\partial V} \mathbf{F} \cdot \mathbf{n} d S
$$

We let $\mathbf{F}=\psi \nabla \phi$ and apply divergence theorem:

$$
\int_{V} \nabla \cdot(\psi \nabla \phi) d V=\int_{\partial V} \psi \nabla \phi \cdot \mathbf{n} d S
$$

The expression can be simplified using a vector identity: (This is identity (7) in the "List of Vector Identities" sheet found on ECE 329 web site)

$$
\nabla \cdot(f \mathbf{A})=f \nabla \cdot \mathbf{A}+\mathbf{A} \cdot \nabla f
$$

by letting $f=\psi$ and $\mathbf{A}=\nabla \phi$:

$$
\int_{V}\left(\psi \nabla^{2} \phi+\nabla \phi \cdot \nabla \psi\right) d V=\int_{\partial V} \psi(\nabla \phi \cdot \mathbf{n}) d S
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.

