
ECE 329 SPRING 2023 Homework 12 Solution

1. (a) (3 points) The characteristic impedance of a co-axial cable is given by

Zo =
1

GF

√
µ

ϵ

where GF = 2π
ln( b

a
)
. Given that Zo = 50Ω, a = 1.2mm, µ = µo, and ϵ = 2.25ϵo, we have

b = a exp(2πZo

√
ϵ

µ
)

= 1.2× 10−3 exp(2π × 50×
√

2.25× 8.854× 10−12

1.257× 10−6
)

= 4.19 [mm].

(b) (4 points) Considering Zo = 50Ω, Rg = 50Ω, and RL = 25Ω, we can find the voltage
reflection coefficients at the load and at the source as follows:

ΓLV =
RL − Zo

RL + Zo

= −1

3

ΓgV =
Rg − Zo

Rg + Zo

= 0

The corresponding current reflection coefficients are

ΓLI
= −ΓLV

=
1

3
, and

ΓgI = −ΓgV = 0

Notice that there is no refected wave at the source due to the fact that ΓgV = ΓgI = 0.
Therefore, for the entire transmission line to reach steady state, we need to wait until the
reflected wave at the load to arrive at z = 0, which requires the two-way travel time.
Thus, the steady state time is determined by

tss =
2l

v
= 2l

√
ϵµ

= 2× 0.15×
√
2.25

c
= 1.5 [ns].

(c) (5 points) The initial voltage at the input of the transmission line is given by the voltage
divider

Zo

Rg + Zo

Vg =
50

50 + 50
× 10u(t) = 5u(t)

Using the reflection coefficients found in (b), we can write down the expressions for voltage
and current as

V (z, t) = 5u(t− z

v
)− 5

3
u(t+

z

v
− 1.5ns) [V],
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I(z, t) =
1

10
u(t− z

v
) +

1

30
u(t+

z

v
− 1.5ns) [A].

At z = l
2
,

V (
l

2
, t) = 5u(t− 0.375ns)− 5

3
u(t− 1.125ns) [V],

I(
l

2
, t) =

1

10
u(t− 0.375ns) +

1

30
u(t− 1.125ns) [A].

(d) (10 points) Applying the Gauss’s law to the co-axial cable, we have

ϵ(2πrl)E(r, t) = (2πal)ρs(t)

E(r, t) =
a

ϵr
ρs(t)r̂

where ρs is the surface charge density on the inner conductor, and a < r < b.
Now consider the voltage drop between the two cylinders as the line integral of the electric
field. At z = l

2
,

V (
l

2
, t) = −

∫ b

a

E(r, t) · dr

= −
∫ b

a

a

ϵr
ρs(t)dr

= −a

ϵ
ln(

b

a
)ρs(t)

Therefore, the charge density as a function of time at z = l
2
is given by

ρs(
l

2
, t) = −

ϵV ( l
2
, t)

a ln( b
a
)

= −1499.2ϵoV (
l

2
, t)

= −7496.0ϵou(t− 0.375ns) + 2498.7ϵou(t− 1.125ns) [C/m2].

Then the time dependent electric field is characterized by

E(r, t) = − 1

r ln( b
a
)
V (

l

2
, t)r̂

=
1

r
(−4.00u(t− 0.375ns) + 1.33u(t− 1.125ns))r̂ [V/m].

By the Ampere’s law, we have

(2πr)B(r, t) = µI(
l

2
, t)

which gives

B(r, t) =
µo

2πr
I(

l

2
, t)(−ϕ̂)

= (−ϕ̂)
µo

r
(1.59e−2u(t− 0.375ns) + 5.31e−3u(t− 1.125ns)) [Wb/m2].
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The direction of the magnetic field is −ϕ̂ because the current in the inner conductor flows
in −ẑ direction.

(e) (4 points) See (f) for the expression for ρs(
l
2
, t). Notice that for the conducting cylinder,

charges and current reside uniformly on the outer surface.
Therefore, the surface charge density Js is given by

Js(
l

2
, t) =

I( l
2
, t)

2πa
(−ẑ)

= −ẑ(13.26u(t− 0.375ns) + 4.42u(t− 1.125ns)) [A/m].

(f) (2 points) FALSE. By the boundary conditions at r = a and r = b, since there is no
electric field inside conductors, we have

ρs(r = a,
l

2
, t) = ϵE(r = a,

l

2
, t)

ρs(r = b,
l

2
, t) = −ϵE(r = b,

l

2
, t)

It is clear that the sign of the outer conductor surface charge density is reversed. However,
the two charge densities have different magnitudes since E(r, t) is a function of r.
For the suface current density of the outer conductor, we can perform the same calculations
as in (e). Then we obtain the following expressions:

Js(r = a,
l

2
, t) =

I( l
2
, t)

2πa
(−ẑ)

Js(r = b,
l

2
, t) =

I( l
2
, t)

2πb
ẑ

Obviously, they have opposite signs and different magnitudes.

Intuitively, you might be thinking of “equal and opposite charge” on two pieces of parallel
metal. This is true, however, for the total amount of charge, not for the charge density.
Apparently the inner conductor surface and outer conductor surface have different areas;
therefore due to “equal and opposite charge”, their charge densities cannot be of the same
magnitude.

(g) (2 points) Once the transmission line reaches steady state, it functions as an ordinary wire.
By Ohm’s law, the steady state current is given by

Iss =
Vg

Rg +RL

=
10

50 + 25
=

2

15
[A].

We can double check the answer from the expression of I(z, t), which gives Iss =
1
10
+ 1

30
=

2
15
A.

Thus, the power delivered to the load is calculated as

PL = I2ssRL = (
2

15
)2 × 25 = 0.44 [W].
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2. (6 points) We have examined the case of a terminated transmission line connected to a two
terminal circuit modeled by a Thevenin equivalent voltage Vg(t) and resistance Rg where the
injection coefficient τg = Zo

Rg+Zo
is found by applying voltage division. To derive this relation

we had to combine the constraint imposed by the two terminal source V = RgIVg (using KVL)
and the transmission line V = ZoI. Assuming that V = V + the two equations combine to give
the result V + = τgVg = Zo

Rg+Zo
Vg. At the moment the source turns on it is only influenced by

the relation V = ZoI inside the transmission line at z = 0. This leads to the familiar voltage
divider result.

For this problem we have two infinite lines connected in parallel with the same two terminal
source with resistance Rg = 150 and Vg(t) = 10u(t) V. To find the injection coefficient for

this configuration the voltage boundary conditions dictate that V = Vg − RgI, V = Z1I, and
V = Z2I. The currents must have the relation I = I1 + I2 if I is the current flowing from
the source, I1 and I2 are the currents flowing into each transmission line. These constraints
are exactly the same as a circuit with the same source configuration connected to two parallel
resistors. This greatly simplifies finding the injection coefficient. Now

τg =
Zeq

Rg + Zeq

,

where

Zeq = Z1//Z2 = (
1

50
+

1

200
)−1 = 40 [Ω].

Then

τg =
Zeq

Rg + Zeq

=
40

150 + 40
=

4

19

is the total injection coefficient i.e. the ratio of the generator voltage injected into the two
parallel lines. Since the lines are combined in parallel, the magnitude of the voltage waves
along them are equal so

V (t = 0+, z = 0+) = V (t = 0+, z = 0) = τgVg =
4

19
× 10 =

40

19
[V],

and we find the current from each line’s characteristic impedance

I(t = 0+, z = 0+) =
τgVg

Z2

=
40

19× 200
= 10.5 [mA],

I(t = 0+, z = 0) =
τgVg

Z1

=
40

19× 50
= 42.41 [mA].
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3. (14 points) We try to decompose the initial conditions into a forward wave and a backward
wave as :

V (z, t) = V + + V − = f(t− z

v
) + g(t+

z

v
)

I(z, t) = I+ − I− =
V + − V −

Zo

=
1

Zo

[f(t− z

v
)− g(t+

z

v
)]

(1)

and seek a solution.

It is obvious that

V + =
1

2
(V + IZo)

V − =
1

2
(V − IZo)

(2)

and we have the following decomposition.
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Since the wave travels at 100 m
µs
, after 0.5µs the wave have traveled 50m and have the following

waveform.

Combining the waveforms we get the voltage and current as below.
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4. Let us consider the following circuit diagram where Zo, RL, and L are unknowns.

(a) (1 point) Looking at the voltage waveform plot given in the problem, it can be seen that
the amplitude of the incident pulse is 60V. Since the ratio between this amplitude and
the source voltage is given by the voltage divider formula, we can write

τg =
60

90
=

2

3
=

Zo

Rg + Zo

=⇒ Zo = 100 [Ω].

(b) (2 points) Again looking at the plot in the problem, one can see that the amplitude of the
first reflected pulse is −20V. Therefore, the reflection coefficient is

ΓL = −20

60
= −1

3
=

RL − Zo

RL + Zo

from which we obtain the load resistance as RL = Zo

2
= 50 [Ω].

(c) (1 point) The time interval between the incident pulse and the second reflected pulse is
6µs, which is equal to the two-way travel time. Then, the time it takes the pulse to travel
from one end of the line to the other is T = 3µs.

(d) (2 points) Since at z0 = 300m, the incident pulse is delayed by 2µs, the propagation
speed υp = 300

2×10−6 = 1.5 × 108m/s. Thus, we can find that the length of the line is
L = vp × T = 150× 3 = 450m.

(e) (3 points) The reflected cofficient at the source is Γg = −1
3
. Therefore, the next two

voltage impluses are −20
9
δ(t− 10)V and 20

27
δ(t− 14)V.

(f) (4 points) Bounce diagram for the current waveform I(z, t) for 0 < t < 12µs is given
below:

(g) (2 points) The expression for the current waveform for 0 < z < L and 0 < t < 12µs is

I(z, t) =
3

5
δ(t− z

υp
) +

1

5
δ(t+

z

υp
− 6µs) +

1

15
δ(t− z

υp
− 6µs) +

1

45
δ(t+

z

υp
− 12µs) [A].
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5. Using the figures, we can identify and compute the following parameters of the circuit.

(a) (2 points) Transmission time T1 = 2 [µs] and T2 = 3 [µs].

(b) (2 points) υp1 =
400

2×10−6 = 2× 108 [m/s], and υp2 =
300

3×10−6 = 1× 108 [m/s].

(c) (1 point) Since there is no reflection at the loadRL, the characteristic impedance of the
line 2 is Z2 = RL = 60 [Ω].

(d) (2 points) The transmission coefficient from line 1 to line 2 is seen to be τ12 =
2
3
. Hence,

the reflection coefficient from line 1 to line 2 is Γ12 = τ12 − 1 = −1
3
.

(e) (2 points) Impedance of line 2 has already been found in part (c) as Z2 = 60 [Ω]. Thus,
using Γ12 =

Z2−Z1

Z2+Z1
= −1

3
, we find Z1 = 120 [Ω].

(f) (2 points) The reflection coefficient at the source is given by Γg = V −,+

V − = 12
−20

= −3
5
.

Then, utilizing this result in Γg =
Rg−Z1

Rg+Z1
, we find Rg =

1
4
Z1 = 30 [Ω].

(g) (1 point) Using the voltage divider rule, the incident voltage is expressed as 60V =
Vo

Z1

Rg+Z1
where Vo is the source voltage. Therefore, Vo = 60Rg+Z1

Z1
= 75 [V].

(h) (1 point) Reflected voltage V −,+,− = −4 [V].

(i) (1 point) Since, as t → ∞, transmission lines become ordinary wires, the steady-state
voltage on line 1 is V1 = Vo

RL

Rg+RL
= 75× 60

30+60
= 50 [V].

(j) (1 point) Same as above, the steady-state voltage on line 2 is V2 = 50 [V]

© Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
8



ECE 329 SPRING 2023 Homework 12 Solution

6. Equivalent circuit of the problem can be seen from that of the previous problem.

(a) (2 points) At steady-state, the presence of the TL doesn’t matter, it acts like a short.
Hence V (z = 0, t = ∞) = VL and I(z = 0, t = ∞) = IL. The circuit simplifies to

Hence,

Rg =
6V− 3V

30mA
= 0.1KΩ = 100Ω.

(b) (2 points) If the defect is a short, RL = 0, hence V (z = 0, t = ∞) = 0 [V], I(z = 0, t =
∞) = 6

100
= 60 [mA]

(c) (2 points) If the defect is an open, RL → ∞, hence V (z = 0, t = ∞) = 6 [V], I(z = 0, t =
∞) = 0 [mA]

(d) (4 points) 2V read from the input end of the line is due to the injection of incident wave
(Vs = 1V) from the source. Hence we get

V (z = 0, t = 0) = τgVs(t = 0)

2 =
Zo

Zg + Zo

× 3.

Thus, the impedance of the tested line is

Z0 = 2Zg = 200Ω.

The incident wave (2V) gets injected into the TL and starts to move down along the line
for a length L then it hits the defect. The reflected wave comes back and reach the input
end of the TL, superposes with the injected incident wave. That’s why we see a change
in response observed later. That means t = 5µs is the “round-trip” time for the wave to
travel from the input end of the TL to the defect and return back to the input end of the
TL. L is then found as

L = v × t

2
= 2× 108m/s× 5

2
µs = 500 [m].

Also, the total voltage observed at the input end of TL increases after the reflected wave
reaches this end. It means the reflected wave is positive (or in phase) with the incident
wave. Hence, it must be an open-circuit type of defect.
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7. (a) (5 points) Suppose the incident wave is V + at the interface, the reflected and transmitted
waves can be expressed as

V − = ΓV + =
α− 1

α + 1
V +

V ++ = τV + = (1 + Γ)V + =
2α

α + 1
V +

(3)

and the corresponding current waves are

I+ =
V +

Z1

I− = −ΓI+ = −α− 1

α + 1

V +

Z1

I++ =
V ++

Z2

=
2

α + 1

V +

Z1

(4)

(b) (2 points) We need to show P− = P+.

P− =
1

2
Re{(V + + V −)(I+ + I−)∗}

=
1

2
Re{(1 + Γ)V +(1− Γ)

(V +)∗

Z1

}

=
1

2
Re{(1− Γ2)

|V +|2

Z1

}

=
1

2
Re{ 4α

(1 + α)2
|V +|2

Z1

}

P+ =
1

2
Re{V ++I++∗}

=
1

2
Re{(1 + Γ)V +(1 + Γ)

V +

Z2

}

=
1

2
Re{(1 + Γ)2

|V +|2

αZ1

}

=
1

2
Re{ 4α

(1 + α)2
|V +|2

Z1

}

(5)

(c) (3 points) α = 0: The T.L. is terminated with a short circuit, so Γ = −1 and τ = 0. A
standing wave is formed with Vmin at the load.

α = 1: Z1 = Z2, so Γ = 0 and τ = 1. All the wave is transmitted into region 2.

α = ∞: The T.L. is terminated with an open circuit, so Γ = 1 and τ = 2. A standing
wave is formed with Vmax at the load.
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