ECE 329 Fields and Waves I Homework 12

Instructors: Chen, Goddard, Shao

Due April 20, 2023, 11:59 PM

Homework Policy:

- Write your name and NetID on top of every page. This habit will help you in exams in the event of having loose page(s).
- Tag all the questions in Gradescope. Failure to do so results in a 5 points deduction.
- Cheating results in ZERO and 50% reduction in HW average on first offense. A 100% reduction in HW average on second offense.
- Please show detailed process for each problem instead of just an answer. No partial credits would be given otherwise. All answers should include units wherever appropriate.
- No late HW is accepted.
- Regrade requests are available one week following grade release.

You are allowed to work with anyone else, but the work you submit should only belong to you. Note that if you have knowledge of a violation of the Honor Code, then you are obligated to report it. By submitting this homework, you are agreeing to the Honor Code: "I have neither given nor received unauthorized aid on this homework, nor have I concealed any violations of the Honor Code."

Question	Points	Score
1	30	
2	6	
3	14	
4	15	
5	15	
6	10	
7	10	
Total:	100	

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.

1. Co-axial (co-ax) cables are the most common kind of transmission line, whereby propagating transverse electromagnetic fields are confined within a tubular dielectric material that lies between two conducting cylinders which share the same geometric axis (see the figure below). Consider a lossless co-ax cable having characteristic impedance $Z_{0}=50 \Omega$, inner radius $a=1.2$ mm , and length $l=15 \mathrm{~cm}$ that is filled with a polyethelene dielectric $\left(\epsilon_{r}=2.25, \mu_{r}=1\right)$. At $z=0$, the co-ax cable is connected to a Thevenin voltage source $V_{g}=10 u(t) \mathrm{V}$ with internal resistance $R_{g}=Z_{0}$, while at $z=l$, it is connected to a resistive load $R_{L}=25 \Omega$.

(a) (3 points) What is the radius of the outer conductor?
(b) (4 points) How long will it take the transmission line to reach steady state equilibrium?
(c) (5 points) Write expressions for the time-dependent voltage and current on the line at $z=\frac{l}{2}$.
(d) (10 points) Write expressions for the associated time-dependent electric and magnetic fields inside the dielectric (i.e., for $a<r<b$) at $z=\frac{l}{2}$.
(e) (4 points) Write expressions for the associated time-dependent surface charge density ρ_{s} and surface current density $\mathbf{J}_{\mathbf{s}}$ on the inner conductor at $z=\frac{l}{2}$.
(f) (2 points) TRUE or FALSE: The surface charge and current densities at $z=\frac{l}{2}$ on the outer conductor are the same as in part (e), but with the opposite algebraic sign. Explain.
(g) (2 points) Once it reaches steady state equilibrium, what is the power delivered to the load?
2. (6 points) At the center of two infinitely long transmission lines aligned along the z-direction is a voltage source and source resistance connected in parallel to both lines. The impedance in each line is different. If $Z_{1}=50 \Omega(z<0)$ and $Z_{2}=200 \Omega(z>0)$, the source voltage $V_{g}=10 u(t) \mathrm{V}$, where $u(t)$ is the unit step function, and the source resistance $R_{g}=150 \Omega$ find $V\left(t=0^{+}, z=0^{+}\right), I\left(t=0^{+}, z=0^{+}\right)$, and $V\left(t=0^{+}, z=0^{-}\right), I\left(t=0^{+}, z=0^{-}\right)$i.e. the voltage and current injected into each tranmission line just as the voltage source turns on. The figure below shows the geometry.

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
3. (14 points) A transmission line of length $L=100 \mathrm{~m}$, impedance $Z_{0}=100 \Omega$, and propagation speed $v_{p}=100\left[\frac{m}{\mu s}\right]$ with matched loads at both ends is initially charged such that voltage $V(z, t=0)$ and $I(z, t=0)$ are given in the figure below. Decompose these initial conditions into the forward and backward moving voltage waves and then find the voltage and current along the line at all time and plot $V(z, t=0.5)$ and $I(z, t=0.5)$. Note all times are in microseconds.

4. A generator with internal resistance $R_{g}=50 \Omega$ and an open circuit output voltage $f(t)=90 \delta(t)$ feeds a T.L. that has an unknown characteristic impedance Z_{o} and an unknown resistive load termination R_{L} at an unknown distance, L, from the generator. At a distance $z_{0}=300 \mathrm{~m}$ from the generator, smaller than L, the voltage waveform as a function of time for $0<t<9 \mu \mathrm{~s}$ is found to be $V\left(z_{0}, t\right)=60 \delta(t-2)-20 \delta(t-4)+\frac{20}{3} \delta(t-8) \mathrm{V}$
(a) (1 point) Determine the injection coefficient τ_{g} and the impedance of the transmission line, Z_{o}.
(b) (2 points) Determine the load reflection coefficient Γ_{L} and the load resistance, R_{L}.
(c) (1 point) Determine the transmission time, $T=L / v_{p}$, of the impulse propagating on the transmission line.
(d) (2 points) Determine the speed of wave propagation on the line, v_{p}, in m / s and the length of the transmission line, L in meters.
(e) (3 points) Determine the next two voltage impulses (magnitudes and time delays) that will be measured at z_{0} on the line for $t>9 \mu \mathrm{~s}$.
(f) (4 points) Sketch a bounce diagram for the current waveform $I(z, t)$ - not the voltage waveform as we have often done - for $0<t<12 \mu \mathrm{~s}$. Be sure to mark the numerical values for the amplitude of the current in the diagram.
(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
(g) (2 points) What is the algebraic expression for the current waveform as a function of (z, t) for the domain $0<z<L$ and $0<t<12 \mu \mathrm{~s}$?
5. A system of two transmission lines connected in series are driven by a voltage source $f_{i}(t)=$ $V_{0} u(t)$ and terminated by a resistive load of 60Ω as shown in the figure below. A switch is closed at $t=0$ and the positive voltages are measured for $5 \mu s$ giving the bounce diagram shown in the figure - the voltage values indicated in the diagram correspond to delta function weights times the source voltage V_{o}, products such as $V_{o} \tau_{g}, V_{o} \tau_{g}\left(1+\Gamma_{12}\right)$, etc.

The impedance and transmission time of line 1 are Z_{1} and T_{1} and those of line 2 are Z_{2} and T_{2}. Using the figures, identify the following parameters in appropriate units:
(a) (2 points) Transmission times T_{1} and T_{2}
(b) (2 points) Propagation velocity $v_{p 1}$ on line 1 , and propagation velocity $v_{p 2}$ on line 2
(c) (1 point) Impedance Z_{2}
(d) (2 points) Reflection coefficient Γ_{12} between lines 1 and 2
(e) (2 points) Impedance Z_{1}
(f) (2 points) Source resistance R_{g}
(g) (1 point) Source voltage V_{o}
(h) (1 point) Reflected voltage V^{-+-}on line 1 (see the diagram for this notation)
(i) (1 point) Steady state voltage V_{1} on line 1 as $t \rightarrow \infty$
(j) (1 point) Steady state voltage V_{2} on line 2 as $t \rightarrow \infty$
(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
6. Time Domain Reflectometry (TDR) is a method by which a defect in a transmission line can be located by injecting a signal at one end of the line and monitoring the reflections that come back. The type of defect and the distance of the defect from the source can be found assuming that the correct response is known. Assume the lossless transmission line to be tested is 2 km long with propagation speed $v=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Assume the tested line is terminated by a 100 W resistor, given that the source is driven by a voltage source $V(t)=6 u(t) \mathrm{V}$, in steady-state, $V(z=0, t=\infty)=3 \mathrm{~V}$ and $I(z=0, t=\infty)=30 \mathrm{~mA}$.
(a) (2 points) Find the source impedance R_{g}.
(b) (2 points) If the defect is a short, find $V(z=0, t=\infty)$ and $I(z=0, t=\infty)$.
(c) (2 points) If the defect is an open, find $V(z=0, t=\infty)$ and $I(z=0, t=\infty)$.
(d) (4 points) If your test equipment sends out a voltage signal $V(z=0, t)=3 u(t) \mathrm{V}$, and receives the voltage at the input as shown in the figure below find the impendance of the transmission line, the location of the defect, and indicate if the damage is a short or an open circuit.

7. Bonus Problem: The figure below shows a graph of the reflection coefficient Γ, the transmission coefficient τ, and $1-\Gamma^{2}$ coefficient for the incident+reflected power in terms of a parameter designated α when a wave $V\left(t-\frac{z}{v_{p}}\right)$ encounters a change in impedance at an arbitrary z. This parameter α is defined so that the impedance of the transmission line into which the wave is transmitted Z_{2} can be written in terms of Z_{1} by assuming that $Z_{2}=\alpha Z 1$. This translates the reflection coefficient from $\Gamma=\frac{Z_{2}-Z_{1}}{Z_{2}+Z 1}$ to $\Gamma=\frac{\alpha-1}{\alpha+1}$.
(a) (5 points) Derive the formula for the voltage and current in the incident, reflected, and transmitted waves in terms of α, and Z_{1}.
(b) (2 points) Show that conservation of energy holds at the interface between the two materials.
(c) (3 points) There are 3 special values $\alpha=0, \alpha=1$, and $\alpha=\infty$. Explain physically the special significance of each in terms of the relative impedances of the two regions, including explanations of the value of each of the parameters in the figure at these special points. Hint: Look at the relative values of the reflected voltage and current as compared to the relative values of the transmitted voltage and current for each case.

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.

