1. (a) (3 points) For the wave described by $\mathbf{E}_{1}=\cos \left(\omega t-\beta z+\frac{\pi}{4}\right) \hat{x} \frac{\mathrm{~V}}{\mathrm{~m}}$,
i. the corresponding phasors are given by

$$
\begin{gathered}
\tilde{\mathbf{E}}_{1}=\hat{x} e^{-j \beta z} e^{j \frac{\pi}{4}} \frac{\mathrm{~V}}{\mathrm{~m}} \\
\tilde{\mathbf{H}}_{1}=\hat{y} \frac{1}{\eta_{o}} e^{-j \beta z} e^{j \frac{\pi}{4}} \frac{\mathrm{~A}}{\mathrm{~m}} .
\end{gathered}
$$

ii. It is linearly polarized in $\hat{x}$-direction.
(b) (3 points) For the wave described by $\mathbf{H}_{2}=2 \cos \left(\omega t+\beta z+\frac{\pi}{3}\right) \hat{x}+2 \sin \left(\omega t+\beta z+\frac{5 \pi}{6}\right) \hat{y} \frac{\mathrm{~A}}{\mathrm{~m}}$,
i. the corresponding phasors are given by

$$
\begin{gathered}
\tilde{\mathbf{H}}_{2}=\hat{x} 2 e^{j \beta z} e^{j \frac{\pi}{3}}+\hat{y} 2 e^{j \beta z} e^{j\left(-\frac{\pi}{2}+\frac{5 \pi}{6}\right)}=2 e^{j\left(\beta z+\frac{\pi}{3}\right)}(\hat{x}+\hat{y}) \frac{\mathrm{A}}{\mathrm{~m}} \\
\tilde{\mathbf{E}}_{3}=2 \eta_{o} e^{j\left(\beta z+\frac{\pi}{3}\right)}(-\hat{x}+\hat{y}) \frac{\mathrm{V}}{\mathrm{~m}}
\end{gathered}
$$

ii. Thus the wave is linearly polarized in $\frac{-\hat{x}+\hat{y}}{\sqrt{2}}$ direction.
(c) (3 points) For the wave described by $\mathbf{E}_{3}=4 \cos (\omega t-\beta x) \hat{z}-3 \sin (\omega t-\beta x) \hat{y} \frac{\mathrm{~V}}{\mathrm{~m}}$,
i. the corresponding phasors are given by

$$
\begin{gathered}
\tilde{\mathbf{E}}_{3}=\hat{z} 4 e^{-j \beta x}+\hat{y} 3 j e^{-j \beta x}=e^{-j \beta x}(4 \hat{z}+3 j \hat{y}) \frac{\mathrm{V}}{\mathrm{~m}} \\
\tilde{\mathbf{H}}_{4}=\frac{1}{\eta_{o}} e^{-j \beta x}(-4 \hat{y}+3 j \hat{z}) \frac{\mathrm{A}}{\mathrm{~m}}
\end{gathered}
$$

ii. Since the two components have different magnitudes, the wave is elliptical polarized.
(d) (3 points) For the wave described by $\mathbf{E}_{4}=5 \cos (\omega t-\beta y) \hat{x}+5 \sin (\omega t-\beta y) \hat{z} \frac{\mathrm{~V}}{\mathrm{~m}}$,
i. the corresponding phasors are given by

$$
\begin{gathered}
\tilde{\mathbf{E}}_{4}=\hat{x} 5 e^{-j \beta y}-\hat{z} 5 j e^{-j \beta y}=5 e^{-j \beta y}(\hat{x}-j \hat{z}) \frac{\mathrm{V}}{\mathrm{~m}} \\
\tilde{\mathbf{H}}_{4}=\frac{5}{\eta_{o}} e^{-j \beta y}(-\hat{z}-j \hat{x}) \frac{\mathrm{A}}{\mathrm{~m}}
\end{gathered}
$$

ii. Given that the wave propagates along $\hat{y}$ direction, it is seen that the wave is left-hand-circularly polarized.
(e) (3 points) For the wave described by $\mathbf{H}_{5}=2 \sin (\omega t+\beta y) \hat{x}-2 \sin \left(\omega t+\beta y-\frac{\pi}{4}\right) \hat{z} \frac{\mathrm{~A}}{\mathrm{~m}}$,
i. the corresponding phasors are given by

$$
\begin{gathered}
\tilde{\mathbf{H}}_{5}=-\hat{x} 2 j e^{j \beta y}+\hat{z} 2 j e^{j \beta y-j \frac{\pi}{4}}=2 j e^{j \beta y}\left(-\hat{x}+e^{-j \frac{\pi}{4}} \hat{z}\right) \frac{\mathrm{A}}{\mathrm{~m}} \\
\tilde{\mathbf{E}}_{5}=2 \eta_{o} j e^{j \beta y}\left(\hat{z}+e^{-j \frac{\pi}{4}} \hat{x}\right) \frac{\mathrm{V}}{\mathrm{~m}}
\end{gathered}
$$

ii. Since the phase angle between $\hat{x}$ and $\hat{z}$ components of $\tilde{\mathbf{E}}_{5}$ is $\frac{\pi}{4}$, not an integer multiple of $\frac{\pi}{2}$, it is seen that the wave is elliptical polarized.
(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
2. (5 points) From Faraday's Law,

$$
\nabla \times\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
E_{0} e^{-\gamma z} & 0 & 0
\end{array}\right|=\hat{\mathbf{E}}=-j \omega \mu \tilde{H} \frac{\partial E_{0} e^{-\gamma z}}{\partial z}=-\hat{y} \gamma E_{0} e^{-\gamma z}=-j \omega \mu \tilde{H}
$$

So we have

$$
\tilde{H}=\hat{y} \frac{\gamma}{j \omega \mu} E_{0} e^{-\gamma z}
$$

If we still want $|\tilde{\mathbf{E}}|=|\eta||\tilde{H}|$,then

$$
|\eta|=\left|\frac{j \omega \mu}{\gamma}\right|
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
3. (a) (3 points) We have

$$
\gamma^{2}=j \omega \mu(j \omega \epsilon+\sigma)=(j \omega \mu \times j \omega \epsilon) \times\left(1+\frac{\sigma}{j \omega \epsilon}\right)=-\omega^{2} \mu \epsilon\left(1-j \frac{\sigma}{\omega \epsilon}\right)
$$

if $\frac{\sigma}{\omega \epsilon} \gg 1$, then $\gamma^{2} \approx-\omega^{2} \mu \epsilon \times-j \frac{\sigma}{\omega \epsilon}=j \omega \mu \sigma$. On the other hand, we have

$$
\gamma^{2}=(\alpha+j \beta)^{2}=\alpha^{2}-\beta^{2}+2 j \alpha \beta
$$

Comparing the above two equations, we have

$$
\alpha^{2}=\beta^{2}, \alpha=\beta=\sqrt{\frac{\omega \mu \sigma}{2}}
$$

(b) (3 points) For $\sigma=0.1 \mathrm{~S}, f=20 \mathrm{MHz}$, we have $\frac{\sigma}{\omega \epsilon}=89.91 \gg 1$, so we have

$$
\begin{gathered}
\beta=\sqrt{\pi f \mu \sigma}=2.81 \mathrm{~m}^{-1} \\
\lambda=\frac{2 \pi}{\beta}=2.23 \mathrm{~m} \\
v_{p}=\frac{\lambda}{T}=4.46 \times 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

(c) (1 point) $\eta$ can be find by

$$
\begin{gathered}
|\eta|=\sqrt{\frac{\omega \mu}{\sigma}}=39.79 \Omega \\
\eta=39.79 e^{j \frac{\pi}{4}} \Omega
\end{gathered}
$$

(d) (2 points) We know that $\alpha=\beta=2.81 \frac{1}{m}$, we have

$$
\begin{aligned}
& \tilde{H}=\frac{1}{2} \hat{z} \times \tilde{J} e^{-\gamma z}=-\hat{y} \frac{1}{2} e^{-2.81 z} e^{-j 2.81 z+j \pi} \frac{\mathrm{~A}}{\mathrm{~m}} \\
& \tilde{E}=\eta \tilde{H} \times \hat{z}=-\hat{x} \frac{39.79}{2} e^{-2.81 z} e^{-j 2.81 z+j \frac{5 \pi}{4}} \frac{\mathrm{~V}}{\mathrm{~m}}
\end{aligned}
$$

(e) (1 point) The location is given by

$$
z=\delta=\frac{1}{\alpha}=0.36 \mathrm{~m}
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
4.

$$
\begin{gathered}
\tilde{E}=A e^{-j \beta x} \hat{y}+B e^{-j \beta x} e^{-j \frac{\pi}{2}} \hat{z} \\
\tilde{H}=\frac{1}{\eta_{o}}\left(A e^{-j \beta x} \hat{y}+B e^{-j \beta x} e^{-j \frac{\pi}{2}} \hat{z}\right) \\
<\mathbf{S}>=\frac{1}{2} \operatorname{Re}(\tilde{\mathbf{E}} \times \tilde{H} *)
\end{gathered}
$$

(a) (3 points) The time-averaged Poynting vector:

$$
<\mathbf{S}>=\frac{1}{2 \eta_{0}}\left[A^{2}+B^{2}\right] \hat{x}
$$

If $A=B=1 / \sqrt{2} V / m$,

$$
<\mathbf{S}>=\frac{1}{2 \eta_{0}} \hat{x}\left[\mathrm{~W} / \mathrm{m}^{2}\right]
$$

(b) (1 point) For $A=1$ and $B=0$,

$$
<\mathbf{S}>=\frac{1}{2 \eta_{0}} \hat{x}\left[\mathrm{~W} / \mathrm{m}^{2}\right]
$$

(c) (1 point) The total time-averaged poynting vector is the sum of the two field components' time-averaged poynting vectors. So for linearly and circularly polarized TEM waves having equal instantaneous peak electric field magnitudes, the ratio of $\langle S\rangle$ would be 1:2.
(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
5. (10 points) When a wave is incident on a boundary between two different media, a reflected wave is produced. In addition, if the second medium is not a perfect conductor, a transmitted wave is set up. Together, these waves satisfy the boundary conditions at the interface of the two media. We shall assume that a $(+)$ wave is incident from medium $1(z<0)$ onto the interface, thereby setting up a reflected ( - ) wave in that medium, and a transmitted wave in medium 2 $(z>0)$. Then we can write the solution for the complex field components in medium 1 to be

$$
\begin{aligned}
\tilde{\mathbf{E}}_{1 x} & =E_{1}^{+} e^{-j \beta_{1} z} \hat{x}+E_{1}^{-} e^{j \beta_{1} z} \hat{x} \\
\tilde{\mathbf{H}}_{1 y} & =H_{1}^{+} e^{-j \beta_{1} z} \hat{y}+H_{1}^{-} e^{j \beta_{1} z} \hat{y} \\
& =\frac{1}{\eta_{1}}\left(E_{1}^{+} e^{-j \beta_{1} z}-E_{1}^{-} e^{j \beta_{1} z}\right) \hat{y}
\end{aligned}
$$

where $\beta_{1}=\frac{\omega}{v_{1}}=\omega \sqrt{\mu_{1} \epsilon_{1}}$ and $\eta_{1}=\sqrt{\frac{\mu_{1}}{\epsilon_{1}}}$. The complex field components in medium 2 are given by

$$
\begin{aligned}
\tilde{\mathbf{E}}_{2 x} & =E_{2}^{+} e^{-j \beta_{2} z} \hat{x} \\
\tilde{\mathbf{H}}_{2 y} & =H_{2}^{+} e^{-j \beta_{2} z} \hat{y} \\
& =\frac{E_{2}^{+} e^{-j \beta_{2} z}}{\eta_{2}} \hat{y}
\end{aligned}
$$

and $\beta_{2}=\frac{\omega}{v_{2}}=\omega \sqrt{\mu_{2} \epsilon_{2}}$ and $\eta_{2}=\sqrt{\frac{\mu_{2}}{\epsilon_{2}}}$.
To satisfy the boundary conditions at $z=0$, we note that both electric and magnetic fields are tangential to the surface and no current exists on the surface. Hence, we have

$$
\begin{aligned}
\tilde{\mathbf{E}}_{1 x}(z=0) & =\tilde{\mathbf{E}}_{2 x}(z=0) \\
\tilde{\mathbf{H}}_{1 y}(z=0) & =\tilde{\mathbf{H}}_{2 y}(z=0)
\end{aligned}
$$

Applying these to the solution pairs,

$$
\begin{gathered}
E_{1}^{+}+E_{1}^{-}=E_{2}^{+} \\
\frac{1}{\eta_{1}}\left(E_{1}^{+}-E_{1}^{-}\right)=\frac{1}{\eta_{2}} E_{2}^{+}
\end{gathered}
$$

The E component of the incident wave is given by $E(z, t)=A_{1} \cos \left(\omega t-\beta_{1} z\right) \hat{x}$, therefore, $E_{1}^{+}=A_{1}$. Solving for the equations above, the phasors of the reflected TEM wave at the interface are shown as

$$
\begin{gathered}
\tilde{\mathbf{E}}_{1}^{-}=\frac{\eta_{2}-\eta_{1}}{\eta_{1}+\eta_{2}} A_{1} e^{j \beta_{1} z} \hat{x} \\
\tilde{\mathbf{H}}_{1}^{-}=-\frac{\eta_{2}-\eta_{1}}{\eta_{1}+\eta_{2}} \frac{A_{1}}{\eta_{1}} e^{j \beta_{1} z} \hat{y}
\end{gathered}
$$

Retrieving the time-dependent forms of the reflected wave, we obtain

$$
E_{1}^{-}(z, t)=\frac{\eta_{2}-\eta_{1}}{\eta_{1}+\eta_{2}} A_{1} \cos \left(\omega t+\beta_{1} z\right) \hat{x}=\frac{\sqrt{\frac{\mu_{2}}{\epsilon_{2}}}-\sqrt{\frac{\mu_{1}}{\epsilon_{1}}}}{\sqrt{\frac{\mu_{1}}{\epsilon_{1}}}+\sqrt{\frac{\mu_{2}}{\epsilon_{2}}}} A_{1} \cos \left(\omega t+\omega \sqrt{\mu_{1} \epsilon_{1}} z\right) \hat{x}
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.

$$
H_{1}^{-}(z, t)=-\frac{\eta_{2}-\eta_{1}}{\eta_{1}+\eta_{2}} \frac{A_{1}}{\eta_{1}} \cos \left(\omega t+\beta_{1} z\right) \hat{y}=-\frac{\sqrt{\frac{\mu_{2}}{\epsilon_{2}}}-\sqrt{\frac{\mu_{1}}{\epsilon_{1}}}}{\sqrt{\frac{\mu_{1}}{\epsilon_{1}}}+\sqrt{\frac{\mu_{2}}{\epsilon_{2}}}} A_{1} \sqrt{\frac{\epsilon_{1}}{\mu_{1}}} \cos \left(\omega t+\omega \sqrt{\mu_{1} \epsilon_{1}} z\right) \hat{y}
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
6. For a wave propagating in a vacuum in $x<0$, we are given an incident electric field phasor

$$
\tilde{\mathbf{E}}_{i}=(j \hat{z}-\hat{y}) e^{-j 2 \pi x} \frac{\mathrm{~V}}{\mathrm{~m}}
$$

The wave encounters a boundary at $x=0$ with $\mu=\mu_{o}$ and the reflected phasor is given by

$$
\tilde{\mathbf{E}}_{r}=-\frac{1}{2}(j \hat{z}-\hat{y}) e^{j 2 \pi x} \frac{\mathrm{~V}}{\mathrm{~m}} .
$$

(a) (2 points) The incident wave is RHCP because $\hat{y}$ leads $\hat{z}$ and the wave is propagating in the $\hat{x}$ direction. The reflected wave is therefore LHCP.
(b) (2 points) The frequency can be calculated from $f=\frac{v_{p} \beta}{2 \pi}$, where $\beta=2 \pi$ and $v_{p}=c$ in a vacuum. Thus, $f=300 \mathrm{MHz}$.
(c) (2 points) The permittivity of the dielectric can be calculated using the reflection coefficient, $\Gamma$.

$$
\begin{aligned}
\Gamma & =\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=-\frac{1}{2} \\
\eta & =\frac{1}{3} \eta_{0} \\
\epsilon_{r} & =9 \\
\epsilon & =9 \epsilon_{o}
\end{aligned}
$$

(d) (2 points) The transmitted electric phasor can be derived from the incident electric phasor with updated $\beta$ and $\tau$. So, $1+\Gamma=\tau=\frac{1}{2}$ and $\beta=\frac{2 \pi f}{v_{p}}=\frac{6 \pi \times 10^{8}}{3 \times 10^{8} \sqrt{9}}=6 \pi$ and therefore $\tilde{\mathbf{E}}_{t}=\frac{1}{2}(j \hat{z}-\hat{y}) e^{-j 6 \pi x} \frac{\mathrm{~V}}{\mathrm{~m}}$.
(e) (2 points) The ratio of time-averaged incident power to time-averaged transmitted power can be found using the conservation of energy: $\frac{\eta_{0}}{\eta} \tau^{2}=1-\Gamma^{2}=75 \%$. The proof is presented below.
The magnetic fields in both the regions are given as,

$$
\begin{gathered}
\tilde{\mathbf{H}}_{i}=\frac{1}{\eta_{o}}(-j \hat{y}-\hat{z}) e^{-j 2 \pi x} \\
\tilde{\mathbf{H}}_{r}=\frac{\Gamma}{\eta_{o}}(-j \hat{y}+\hat{z}) e^{j 2 \pi x} \\
\tilde{\mathbf{H}}_{t}=\frac{\tau}{\eta}(-j \hat{y}-\hat{z}) e^{-j 6 \pi x}
\end{gathered}
$$

The corresponding time averaged poynting vectors,

$$
\begin{aligned}
\left\langle\mathbf{S}_{i}\right\rangle & =\frac{1}{2} \operatorname{Re}\left\{\tilde{\mathbf{E}}_{i} \times \tilde{\mathbf{H}}_{i}{ }^{*}\right\}=\frac{1}{\eta_{o}} \hat{x} \\
\left\langle\mathbf{S}_{r}\right\rangle & =\frac{1}{2} \operatorname{Re}\left\{\tilde{\mathbf{E}}_{r} \times \tilde{\mathbf{H}}_{r}{ }^{*}\right\}=\frac{\Gamma^{2}}{\eta_{o}} \hat{x} \\
\left\langle\mathbf{S}_{t}\right\rangle & =\frac{1}{2} \operatorname{Re}\left\{\tilde{\mathbf{E}}_{t} \times \tilde{\mathbf{H}}_{t}{ }^{*}\right\}=\frac{\tau^{2}}{\eta} \hat{x}
\end{aligned}
$$

It can be shown that the power density calculated for the incident, reflected, and transported waves will satisfy

$$
\left|\left\langle\mathbf{S}_{i}\right\rangle\right|=\left|\left\langle\mathbf{S}_{r}\right\rangle\right|+\left|\left\langle\mathbf{S}_{t}\right\rangle\right|,
$$

which shows that the calculations are in compliance with energy conservation principle. Also, note that

$$
\begin{aligned}
& \frac{1}{\eta_{o}}=\frac{\Gamma^{2}}{\eta_{o}}+\frac{\tau^{2}}{\eta} \\
& \frac{\eta_{0}}{\eta} \tau^{2}=1-\Gamma^{2}
\end{aligned}
$$

(C) Victoria Shao - Copying, publishing or distributing without written permission is prohibited.
7. (a) (5 points) Assuming the conductor lies along z axis, $E_{z}=B_{z}=0$ for TEM waves. Since charge density for a perfect conductor is non-zero only at the surface, from Gauss's Law,

$$
\nabla \cdot \mathbf{E}=0
$$

Expanding the divergence we obtain:

$$
\begin{equation*}
\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}=0 \tag{1}
\end{equation*}
$$

Additionally, the curl of the electric field is given by,

$$
\nabla \times \mathbf{E}=-\hat{x} \frac{\partial E_{y}}{\partial z}+\hat{y} \frac{\partial E_{x}}{\partial z}+\hat{z}\left(\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}\right)=-\mu\left(\hat{x} \frac{\partial H_{x}}{\partial t}+\hat{y} \frac{\partial H_{y}}{\partial t}\right)
$$

The z component gives:

$$
\begin{equation*}
\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=0 \tag{2}
\end{equation*}
$$

Therefore, the solution for the electric field from (1) and (2) is zero after applying boundary conditions. Hence, a TEM wave cannot propagate through a hollow longitudinally symmetric metallic tube.
(b) (5 points) An ideal coax has no external field and the outer conductor acts as a shield against external electromagnetic waves, so it suffers less intereference problems than a pair of copper wires. Additionally, any change in shape or distance between the copper wires changes the impedance of the transmition line and cause losses due to reflection. A coax cable is specifically designed to keep spacing uniform to mitigate these issues.
(c) (5 points) Please refer to the following picture.

