28 Distributed circuits and bounce diagrams

Last lecture we learned that voltage and current variations on TL’s are gov- \/ < ,ZDI]
erned by telegrapher’s equations and their d’Alembert solutions — the latter r~ 577 0
v\ .

can be expressed as ﬂ _ K ﬁ .
vo=ri-Hegres B

and JL Q‘}/ﬂ j/'e ’f/’/%/

flt—2) ]g(t+2) 7~ H. 1=50 50

Wire 2

in terms of
1@ E _ _,..(__ _L Eizrce Transmission line
v nd|( Z, = G_F _ R _1,(z t) IL

8 Lo
and functions f(¢) and g(?) corresponding to signal waveforms propagated in (Z e VizY) 1re . %ERTL
+z and —z directions, respectively.

l
W";mf\’ Zf z:rfl Re.
e In this lecture we will learn how to solve distributed circuit prob-
lems containing TL segments and two terminal elements such as resis- RL = 2y <—
tors and voltage (or current) sources. In solving the problems,; we will
apply the usual rules of lumped circuit analysis at element terminals ™
and treat the TL’s in terms of d’Alembert solutions above. }—7 _ R = %o
+ R, + 2,



e Consider a TL with a characteristic impedance Z, extending from z = 0
to z = [, where a two-terminal source circuit (e.g., a receiving antenna)

modeled by a Thevenin equivalent with voltage f;(t) and resistance iﬁﬁrfge jzafsmls;li:: ji“e _{L
R, is connected between the TL terminals at z = 0 and a load (e.g., T A
a receiver circuit) modeled by a resistance Ry terminates the line at o 1, t)<_ L L
z = [ (see margin). 0 7
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— We want to determine voltage and current signals V(z,t) and
I(z,t) on the TL and the load in terms of source signal f;(¢).

e [t us first consider the case when
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which is only possible if g(t + %) = 0 for all ¢.

— Hence

V(z,t) = f(t—=) and I(z,t) = —
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in this simplified circuit with Ry = Z,.
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— Now, for z =0, \/ \/(Z ;t) ;Fi(/ti — ﬁ—a') :
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— We recognize this result as “Voitage division” of the source volt- R/. = Z?0_
age f;(t) across the transmission line terminals having an effective -0
“input resistance” of Z,. We will also write this result as 9
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e In summary, in the circuit examined above having a “matched load” £ [Vq?t)z %Y) %
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e [t is useful to consider the case fi(t) = §(t), and refer to the corre- — ahage dovis

sponding voltage solution
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as an impulse response, extending an important concept we learned
about in ECE 210.

— Knowing an impulse response h.(t) is useful since convolving it
with any f;(t) gives us the system response to input f;(t) .

Clearly, we need the ckt impulse response for an arbitrary R;. W %Z’w =
e In our circuit with an arbitrary Ry and an impulse input (see margin), 5@?227&}1(2’0 % VL% i
our earlier solutions 0 3, s
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at all times t. However, it can be easily verified that d’Alembert series Tv :

solutions of the form
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can be fitted to the required boundary conditions at both ends if
Ry — 2,
L= R; + ZO.
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— In these series, the second terms represent the “reflected” counter-
parts of the first terms where I';, is a reflection coefficient, and

— We assume that other terms not explicitly shown (i.e., +---’s in
the series) vanish for ¢ < %ﬁ (and play a role at later times).

Verification: In the time interval 0 < t < %g, the assumed series

expressions evaluate, at z = £, to
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as claimed.

This effectively verifies the assumed series solutions above for the time inter-
val 0 <t < %ﬁ — re-confirming that the boundary condition at z = 0 is also
met is left as an optional exercise.



e The solution obtained above (for ¢ < %6) can be better appreciated and A= =
extended to all times with the help of so-called bounce diagrams — ngf
(1) I(z,t

see margin.

— A bounce diagram is a plot of the “trajectories” of traveling im-
pulses found on transmission line segments excited by impulse in-

puts.
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— The horizontal axis represents position z of the traveling impulses
while time ¢ is represented by a downward pointing axis.

— The first slanted line on the top of the diagram, representing the

traveling impulse
2z
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v
(first term of h.(t) = V/(z,t)) is “reflected” at time ¢ = £ from load
R to turn into a backward propagating impulse

z U
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represented by the second line of the diagram.

— The backward propagating impulse reaches z =0 at ¢t = %‘g and is
reflected once more with a reflection coefficient
r,— R, — Z,
R, + Z,
to become a forward propagating impulse
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represented by the third line of the diagram.

o Reflection at R, is in effect the same physical process as re-
flection at Ry and therefore its coefficient I, is identical with
I';, except for the replacement of Ry, by R,.

— The bounce diagram is advanced in time with further reflections
occurring at both ends.

— We show the calculated weights of traveling impulses directly on
the diagram just above the slanted lines representing the trajec-
tories of each traveling impulse (each having a lifetime of £/v)

e Using the bounce diagram, the full expressions for the voltage and
current impulse response functions of the circuit can be written as
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e Although these series formulae' look daunting, only the lower order

terms usually matter — that is true because |[I'f| < 1 and |I'y| <1 and R, [(=1)

thus (I'tI'y)" is typically a rapidly diminishing function of n (unless

o ' Z v
the ckt is “dissipation free” and resonant, a concept explored in Lecture 5(t) ](Zyt)z(z’t) v %RL
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e We typically rely on the bounce diagram technique more so than the Bounce diagram
series expressions developed above. This will be illustrated by several '
examples in the next lecture.
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— The main idea is to combine delayed versions of the circuit input
fi(t) with the impulse weights indicated on the bounce diagram,

since, in general, the convolution 6(t — T3,) % f;(t) = fi(t — T%.) for

any z-dependent delay such as =, = — %ﬁ, etc...

'The first term of V(z,t) in the series formula can also be obtained from the formal solution of the
equation

(1) = (1) + TuT, 0 = 20)

which, in turn, is obtained from
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enforced at z =0 and z = ¢ at all times t. The second term in V(z,t) comes from the requirement that

o(t) =Tt +25),

which is a consequence of the boundary condition at z = ¢. We have effectively by-passed such a formal
derivation by using the bounce diagram technique.



