
25 Wave reflection and transmission

In this lecture we will examine the phenomenon of plane-wave reflections at
an interface separating two homogeneous regions where Maxwell’s equations
allow for traveling TEM wave solutions. The solutions will also need to

n̂ · (D+ −D
−) = ρs

n̂ · (B+ −B
−) = 0

n̂× (E+ − E
−) = 0

n̂× (H+ −H
−) = Js

satisfy the boundary condition equations repeated in the margin. We will
consider a propagation scenario in which (see margin):
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1. Region 1 where z < 0 is occupied by a perfect dielectric with medium
parameters µ1, ε1, and σ1 = 0,

2. Region 2 where z > 0 is homogeneous with medium parameters µ2, ε2,
and σ2,

3. Interface z = 0 contains no surface charge or current except possibly
in σ2 → ∞ limit which will be considered separately at the end.

• In Region 1 we envision an incident plane-wave with linear-polarized field phasors

Ẽi = x̂Eoe
−jβ1z and H̃i = ŷ

Eo

η1
e−jβ1z,

where

– Eo is the wave amplitude due to far away source located in z → −∞ region,

– η1 =
√

µ1

ε1
and β1 = ω

√
µ1ε1.
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Fields above satisfy Maxwell’s equations in Region 1, but if there were no
other fields in Regions 1 and 2 boundary condition equations requiring
continuous tangential E and H at the z = 0 interface would be violated.

In order to comply with the boundary condition equations we postulate
a set of reflected and transmitted wave fields in Regions 1 and 2 as follows: Incident:

Ẽi = x̂Eoe
−jβ1z,

H̃i = ŷ
Eo

η1
e−jβ1z,

Reflected:

Ẽr = x̂ΓEoe
jβ1z,

H̃r = −ŷ
ΓEo

η1
ejβ1z,

Transmitted:

Ẽt = x̂τEoe
−γ2z,

H̃t = ŷ
τEo

η2
e−γ2z.

• In Region 1 we postulate a reflected plane-wave with linear-polarized field phasors

Ẽr = x̂ΓEoe
jβ1z and H̃r = −ŷ

ΓEo

η1
ejβ1z

including an unknown Γ that we will refer to as reflection coefficient.

– Note that the reflected wave propagates in −z direction (direction of H̃r and
the exponential terms have been adjusted accordingly).

• In Region 2 we postulate a transmitted plane-wave with linear-polarized field

phasors

Ẽt = x̂τEoe
−γ2z and H̃t = ŷ

τEo

η2
e−γ2z

including an unknown τ that we will refer to as transmission coefficient.

– Note that the transmitted wave propagates in z direction, and

– since Region 2 is conducting we have

η2 =

√

jωµ2

σ2 + jωε2

and
γ2 =

√

(jωµ2)(σ2 + jωε2) = α2 + jβ2.
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• To determine the unknowns Γ and τ we enforce the following boundary
conditions at z = 0 where the fields simplify as shown in the margin: Incident at z = 0:

Ẽi = x̂Eo, H̃i = ŷ
Eo

η1
,

Reflected at z = 0:

Ẽr = x̂ΓEo, H̃r = −ŷ
ΓEo

η1

Transmitted at z = 0:

Ẽt = x̂τEo, H̃t = ŷ
τEo

η2

1. Tangential Ẽ continuous at z = 0: This requires Ẽix + Ẽrx = Ẽtx,
leading to

(1 + Γ)Eo = τEo ⇒ 1+Γ=τ

2. Tangential H̃ continuous at z = 0: This requires H̃iy + H̃ry = H̃ty,
leading to

(1− Γ)
Eo

η1
= τ

Eo

η2
⇒ 1-Γ=η1

η2
τ

Replacing τ by 1 + Γ in the second equation, we can solve for the
reflection coefficient as

Γ=η2−η1
η2+η1

and substituting this in turn in the first equation we can solve for the
transmission coefficient as

τ= 2η2
η2+η1

The results are summarized in the margin on the next page.
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Reflection coeff.:

Γ =
η2 − η1
η2 + η1

,

Transmission coeff.:

τ =
2η2

η2 + η1
.

Memorize the Γ for-

mula, and memorize

τ as “one plus Γ”.

Above,

η1 =

√

µ1

ε1

and

η2 =

√

jωµ2

σ2 + jωε2
.

Special cases:

1. Region 2 is a perfect conductor with σ2 → ∞: In that case
η2 → 0, and consequently

Γ = −1 and τ = 0.

Incident wave cannot penetrate the perfect conductor, and it reflects
totally back into Region 1 — we will study this idealized limiting case
more carefully later on.

Practical application of total reflection: mirrors

2. Region 2 is the same as Region 1: In that case η2 = η1, and
consequently

Γ = 0 and τ = 1.

This is the matched impedance case when no reflection takes place
and the incident wave is transmitted in its entirety.

3. Region 2 is lossless, i.e., σ2 = 0: Unless η2 = η1 there will be
reflected as well as transmitted waves.

Partial reflections can be reduced by applying a “anti-glare” coat-
ing1 on the surface, a practice known as “impedance matching”.

1This is a λ/4 thick layer of a material having a characteristic impedance given by
√
η1η2 — the reason

for why this “quarter-wave matching” works will be discussed when we study transmission lines later on.
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Example 1: An plane-wave in vacuum,

Ẽi = x̂
√
120πe−jβ1z V

m
,

is incident at z = 0 on a dielectric medium with µ = µo and ε = 9

4
εo. Determine

the average Poynting vectors 〈Si〉, 〈Sr〉, and 〈St〉 of the incident, reflected, and
transmitted fields.

Solution: The intrinsic impedance of the second medium occupying z > 0 is

η2 =
√

µo

9

4
εo

=
2

3
ηo.

Therefore, the reflection coefficient is

Γ =
η2 − η1
η2 + η1

=
2

3
ηo − ηo

2

3
ηo + ηo

=
2

3
− 1

2

3
+ 1

=
2− 3

2 + 3
= −

1

5

and the transmission coefficient is

τ = 1 + Γ = 1−
1

5
=

4

5
.

The reflected wave therefore has the field phasors

Ẽr = −
1

5
x̂
√
120πejβ1z and H̃r =

1

5ηo
ŷ
√
120πejβ1z

and

〈Sr〉 =
1

2
Re{Ẽr × H̃

∗
r} = −ẑ

1

2
(
1

5
)2
120π

ηo
≈ −ẑ

1

2
(
1

5
)2

W

m2
.
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The transmitted wave, likewise, has the field phasors

Ẽt =
4

5
x̂
√
120πe−jβ2z and H̃t =

4

52

3
ηo
ŷ
√
120πe−jβ2z

and

〈St〉 =
1

2
Re{Ẽt × H̃

∗
t} = ẑ

1

2
(
4

5
)2
3

2

120π

ηo
≈ ẑ

1

2
(
4

5
)2
3

2

W

m2
.

As for the incident wave

Ẽi = x̂
√
120πe−jβ1z and H̃i =

1

ηo
ŷ
√
120πe−jβ1z

and

〈Si〉 =
1

2
Re{Ẽi × H̃

∗
i} = ẑ

1

2

120π

ηo
≈ ẑ

1

2

W

m2
.

Note: We have

|〈Sr〉| + |〈St〉| =
1

2
(
1

25
+

16

25

3

2
) =

1

2
(
1

25
+

24

25
) =

1

2
= |〈Si〉|

in compliance with energy conservation (as expected) — energy flux per unit

area of the transmitted and reflected waves add up the that of the

incident wave!
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