22 Phasor form of Maxwell’s equations and
damped waves in conducting media

e When the fields and the sources in Maxwell’s equations are all monochro-
matic functions of time expressed in terms of their phasors, Maxwell’s
equations can be transformed into the phasor domain.

— In the phasor domain all \/
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and all variables D, p, etc. are replaced by their phasors D, p, and
so on. With those changes Maxwell’s equations take the form shown
in the margin.

— Also in these equations it is implied that
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where €, p, and o could be a function of frequency w (as, strictly
speaking, they all are as seen in Lecture 11).

— We can derive from the phasor form Maxwell’s equations shown in
the margin the TEM wave properties obtained earlier on using the
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time-domain equations by assuming p = J = 0.
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We will do that, and and after that relax the requirement J = 0 with
J = oE to examine how TEM waves propagate in conducting media.

e With p = J = 0 the phasor form Maxwell’s equation &(e their 81mp 2gcled

forms shown in the margin. ¢cL = ,4,1.8 C
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— Upon substitution into wave equation both of these lead to
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— Furthermore, using the phasor form Faraday’s law it is easy to show

that
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Note that we have recovered above the familiar propertles
of plane TEM waves using phasor methods.
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Next, the phasor method carries us to a new domain that cannot be easily
examined using time-domain methods.
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e With p = 0 but J =0E = 0, implying non-zero conductivity o, the
pertinent phasor form equations are as shown in the margin.

— This is the same set as before, except that

@has been replaced by

Thus, we can make use of phasor wave solutions above after applying

the following modifications to v and »: ,/
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leading to useful relations shown in the margin (assuming real valued

o and €).
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. (a) Damped wave snapshot at t=0
e In terms of v and n above, we can express an x—polarlzet plane wave together with exponential envelope
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for comparison
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2. Another case of imperfect dielectric (or “lousy” conductor) occurs
when o is not zero, but it is so small that are justified in using
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@ third case of good conductor corresponds to = >> 1. In that case,
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case B, — 0 as we will show later on. Wave fields cannot exist in perfect
conductors.

(b) Snaphot at t>0, with t=0 waveform
for comparison
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Summarizing, in a homogeneous medium with arbitrary but con- |/

stant p, €, and o, time-harmonic plane TEM waves are in terms of | \f‘*l[\ /’\ﬂ
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form. Subscript p is introduced to distinguish v, — also called phase Fa
velocity — from group wvelocity v, discussed in ECE 450 (velocity of factor in propagation
narrowband wave packets). direction.
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now depends on frequency f via both the numerator and the denomi-
nator, and measures twice the distance between successive nodes of the

(a) Damped wave snapshot at t=0
together with exponential envelope
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is the distance for the field strength to be reduced by e~! factor in its

direction of propagation.

— For a fixed o, and a sufficiently large w, the penetration depth
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which can be very small if ¢ is large — with small 6 the wave is

Imperfect dielectric formula

severely attenuated as it propagates.

— For a fixed o, and a sufficiently small w,
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which, although small with large o, increases as w decreases, making

low frequencies to be preferable in applications requiring propagat-
ing through lossy media with large o, such as in sea-water.
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(b) Snaphot at t>0, with t=0 waveform
for comparison
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