22 Phasor form of Maxwell's equations and damped waves in conducting media

- When the fields and the sources in Maxwell's equations are all monochromatic functions of time expressed in terms of their phasors, Maxwell's equations can be transformed into the phasor domain.
 - In the phasor domain all

$$\longrightarrow \frac{\partial}{\partial t} \rightarrow j\omega \bigvee$$

and all variables \mathbf{D} , ρ , etc. are replaced by their phasors $\tilde{\mathbf{D}}$, $\tilde{\rho}$, and so on. With those changes Maxwell's equations take the form shown in the margin.

- Also in these equations it is implied that

$$\tilde{\mathbf{D}} = \epsilon \tilde{\mathbf{E}}$$

$$\tilde{\mathbf{B}} = \mu \tilde{\mathbf{H}}$$

$$\tilde{\mathbf{J}} = \sigma \tilde{\mathbf{E}}$$

where ϵ , μ , and σ could be a function of frequency ω (as, strictly speaking, they all are as seen in Lecture 11).

– We can derive from the phasor form Maxwell's equations shown in the margin the TEM wave properties obtained earlier on using the time-domain equations by assuming $\tilde{\rho} = \tilde{\mathbf{J}} = 0$.

$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}.$$

$$\nabla \cdot \varepsilon \vec{E} = 0$$

$$\nabla \cdot \tilde{\mathbf{D}} = \tilde{\rho}$$

$$\nabla \cdot \tilde{\mathbf{B}} = 0$$

$$\nabla \times \tilde{\mathbf{E}} = -j\omega \tilde{\mathbf{B}}$$

$$\nabla \times \tilde{\mathbf{H}} = \tilde{\mathbf{J}} + j\omega \tilde{\mathbf{D}}$$

We will do that, and and after that relax the requirement $\tilde{\mathbf{J}} = 0$ with $\tilde{\mathbf{J}} = \sigma \tilde{\mathbf{E}}$ to examine how TEM waves propagate in conducting media.

• With $\tilde{\rho} = \tilde{\mathbf{J}} = 0$ the phasor form Maxwell's equation take their simplified forms shown in the margin.

In
$$\rho = \mathbf{J} = 0$$
 the phasor form Maxwell's equation take their simplified as shown in the margin.

Using
$$\nabla \times [\nabla \times \tilde{\mathbf{E}} = -j\omega\mu\tilde{\mathbf{H}}] \Rightarrow -\nabla^2\tilde{\mathbf{E}} = -j\omega\mu\nabla \times \tilde{\mathbf{H}}$$

$$\nabla \times \tilde{\mathbf{E}} = 0$$

$$\nabla \times \tilde{\mathbf{E}} = 0$$

$$\nabla \times \tilde{\mathbf{H}} = 0$$

$$\nabla \times \tilde{\mathbf{E}} = -j\omega\mu\tilde{\mathbf{H}}$$
which combines with the Ampere's law to produce
$$\nabla \times \tilde{\mathbf{H}} = j\omega\epsilon\tilde{\mathbf{E}}$$

$$\nabla \vec{E} = M \mathcal{E} \frac{\partial \vec{E}}{\partial t^2} \qquad \nabla^2 \tilde{\mathbf{E}} + \omega^2 \mu \epsilon \tilde{\mathbf{E}} = 0.$$

$$\nabla \mathbf{X} (\nabla \mathbf{X} \vec{A}) = \nabla (\nabla \vec{A}) - \nabla \vec{A}$$

$$\nabla \nabla \mathbf{X} (\nabla \mathbf{X} \vec{A}) = \nabla (\nabla \vec{A}) - \nabla \vec{A}$$

For x-polarized waves with phasors

$$\tilde{\mathbf{E}} = \hat{x}\tilde{E}_x(z),$$

the phasor wave equation above simplifies as

$$\sqrt{\frac{\partial^2}{\partial z_h^2}}\tilde{E}_x + \omega^2\mu\epsilon\tilde{E}_x = 0.$$
 $\mathcal{E}^{\mp st}$

- Try solutions of the form v Fx

$$\int \tilde{E}_x(z) = \underbrace{e^{-\gamma z} \text{ or } e^{\gamma z}} \qquad \qquad e^{\mp \int \beta z}.$$

where γ is to be determined.

- Upon substitution into wave equation both of these lead to

$$\underbrace{(\gamma^2 + \omega^2 \mu \epsilon)\tilde{E}_x = 0,}_{\uparrow}$$

which yields

$$\gamma^2 + \omega^2 \mu \epsilon = 0 \quad \Rightarrow \quad \gamma^2 = -\omega^2 \mu \epsilon$$

from which one possibility is

$$\sqrt{\gamma} = j\beta, \text{ with } \beta \equiv \omega \sqrt{\mu \epsilon}.$$

Thus viable phasor solutions are

as we already knew.
$$\nabla x \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad \vec{B} = \mathcal{U} \vec{H}$$

$$- \text{Furthermore, using the phasor form Faraday's law it is easy to show that} \quad \vec{F}_{\mathcal{A}} \vec{F}_{\mathcal{A}}$$

of plane TEM waves using phasor methods.

Next, the phasor method carries us to a new domain that cannot be easily examined using time-domain methods.

• With $\tilde{\rho} = 0$ but $\tilde{\mathbf{J}} = \sigma \tilde{\mathbf{E}} \neq 0$, implying non-zero conductivity σ , the pertinent phasor form equations are as shown in the margin.

- This is the same set as before, except that

$$j\omega e$$
 has been replaced by $\sigma + j\omega \epsilon$.

Thus, we can make use of phasor wave solutions above after applying the following modifications to γ and η :

1.
$$(j+j)wE . \qquad \stackrel{\sim}{E} = f_0 e^{\mp \gamma Z} .$$

$$(\gamma^2) = -\omega^2 \mu \epsilon = (j\omega\mu)(j\omega\epsilon) \qquad \Rightarrow \Rightarrow \qquad \gamma = \sqrt{(j\omega\mu)(\sigma + j\omega\epsilon)}$$

$$\nabla \cdot \tilde{\mathbf{E}} = 0$$

$$\nabla \cdot \tilde{\mathbf{H}} = 0$$

$$\nabla \times \tilde{\mathbf{E}} = -j\omega\mu\tilde{\mathbf{H}}$$

$$\nabla \times \tilde{\mathbf{H}} = (\sigma\tilde{\mathbf{E}}) + j\omega\epsilon\tilde{\mathbf{E}} \leq (\sigma + j\omega\epsilon)\tilde{\mathbf{E}}$$

$$= (\sigma + j\omega\epsilon)\tilde{\mathbf{E}}$$

$$\eta = \sqrt{\frac{\varkappa}{2}}.$$

2.

$$\underbrace{\eta} = \sqrt{\frac{\mu}{\epsilon}} = \sqrt{\frac{j\omega\mu}{j\omega\epsilon}} \quad \Rightarrow \Rightarrow \\
\sigma \neq 0$$

$$\underbrace{\eta} = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\epsilon}}. \quad \text{w. £}.$$

Note that the modified γ and η satisfy

$$\underline{\gamma\eta} = \underline{j\omega\mu} \text{ and } \frac{\gamma}{\eta} = \underline{(\sigma)} + \underline{j\omega\epsilon}$$

leading to useful relations shown in the margin (assuming real valued σ and ϵ).

$$\sqrt{\mu} = \frac{\gamma \eta}{j\omega}$$

$$\sigma = \text{Re}\{\frac{\gamma}{\eta}\}$$

$$\epsilon = \frac{1}{\omega} \text{Im}\{\frac{\gamma}{\eta}\}$$

• In terms of γ and η above, we can express an x-polarized plane wave

In terms of
$$\gamma$$
 and η above, we can express an x -polarized propagating in z direction in terms of phasors $E = \hat{x}E_o e^{-\frac{\gamma z}{2}}$ and $\tilde{H} = \pm \hat{y}\frac{E_o}{\eta}e^{\pm \hat{y}z}$

where E_o is an arbitrary complex constant (complex wave amplitude).

$$\gamma = \sqrt{(j\omega\mu)(\sigma + j\omega\epsilon)} \equiv \alpha + j\beta, \text{ so that } \alpha = \text{Re}\{\gamma\} \text{ and } \beta = \text{Im}\{\gamma\},$$
 and
$$\beta = \text{Im}\{\gamma\},$$
 and
$$\beta = \text{Im}\{\gamma\},$$
 and
$$\beta = \text{Im}\{\gamma\},$$
 and
$$\beta = \text{Im}\{\gamma\},$$

$$\sqrt{\eta} = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\epsilon}} \equiv |\eta|e^{j\tau} \text{ so that } |\eta| = |\sqrt{\frac{j\omega\mu}{\sigma + j\omega\epsilon}}| \text{ and } \tau = \angle\sqrt{\frac{j\omega\mu}{\sigma + j\omega\epsilon}}.$$

1. In the special case of a **perfect dielectric** with $\sigma = 0$, we find

$$\gamma = j\omega\sqrt{\mu\epsilon} \equiv j\beta \text{ and } \eta = \sqrt{\frac{\mu}{\epsilon}},$$

and, therefore,

$$\tilde{\mathbf{E}} = \hat{x} E_o e^{\mp j\beta z}$$
 and $\tilde{\mathbf{H}} = \pm \frac{\hat{y} E_o e^{\mp j\beta z}}{\eta}$

as before. In this case $\alpha = \tau = 0$.

(a) Damped wave snapshot at t=0 together with exponential envelope

(b) Snaphot at t>0, with t=0 waveform for comparison

 β appears within cosine argument and determines the wavelength

$$\lambda = \frac{2\pi}{\beta}$$

and propagation speed

$$v_p = \frac{\omega}{\beta}$$

 α controls wave attenuation by

$$e^{\mp \alpha z}$$

factor in propagation direction.

2. Another case of **imperfect dielectric** (or "lousy" conductor) occurs when σ is not zero, but it is so small that are justified in using

$$(1 \pm a)^p \approx 1 \pm pa$$
, if $|a| \ll 1$,

with $p = \frac{1}{2}$ as follows: For $\frac{\sigma}{\omega \epsilon} \ll 1$,

$$\gamma = \sqrt{(j\omega\mu)(\sigma + j\omega\epsilon)} = j\omega\sqrt{\mu\epsilon}(1 - j\frac{\sigma}{\omega\epsilon})^{1/2} \approx j\omega\sqrt{\mu\epsilon}(1 - j\frac{\sigma}{2\omega\epsilon}) = \frac{\sigma}{2}\sqrt{\frac{\mu}{\epsilon}} + j\omega\sqrt{\mu\epsilon};$$

hence

$$\tilde{\mathbf{E}} \approx \hat{x} E_o e^{\mp(\alpha + j\beta)z}$$
 with $\alpha = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$ and $\beta = \omega \sqrt{\mu \epsilon}$;

also in the same case

$$\tilde{\mathbf{H}} \approx \pm \frac{\hat{y} E_o e^{\mp(\alpha + j\beta)z}}{\eta} \text{ with } \eta = \sqrt{\frac{\mu}{\epsilon(1 - j\frac{\sigma}{\omega\epsilon})}} \approx \sqrt{\frac{\mu}{\epsilon}} (1 + j\frac{\sigma}{2\omega\epsilon}) \approx \sqrt{\frac{\mu}{\epsilon}} e^{j\tan^{-1}\frac{\sigma}{2\omega\epsilon}},$$

such that

$$|\eta| \approx \sqrt{\frac{\mu}{\epsilon}} \text{ and } \tau = \angle \eta \approx \frac{\sigma}{2\omega\epsilon}.$$

Note: γ and η both are *complex* valued, the consequences of which will be examined later on.

3. A third case of **good conductor** corresponds to $\frac{\sigma}{\omega \epsilon} \gg 1$. In that case,

$$\gamma = j\omega\sqrt{\mu\epsilon(1-j\frac{\sigma}{\omega\epsilon})} \approx \omega\sqrt{j\mu\frac{\sigma}{\omega}} = (1+j)\sqrt{\frac{\omega\mu\sigma}{2}} \text{ and } \eta \approx \sqrt{\frac{\mu}{-j\frac{\sigma}{\omega}}} = \sqrt{\frac{j\omega\mu}{\sigma}} = \sqrt{\frac{\omega\mu}{\sigma}}e^{j\pi/4}.$$

Hence,

$$\alpha \approx \beta \approx \sqrt{\frac{\omega\mu\sigma}{2}} = \sqrt{\pi f\mu\sigma}$$
 while $|\eta| = \sqrt{\frac{\omega\mu}{\sigma}}$ and $\tau = \angle \eta = 45^{\circ}$.

- 4. Finally, **perfect conductor** case corresponds to $\sigma \to \infty$, in which case $\tilde{E}_x \to 0$ as we will show later on. Wave fields cannot exist in perfect conductors.
- Summarizing, in a **homogeneous medium** with arbitrary but constant μ , ϵ , and σ , time-harmonic plane TEM waves are in terms of

$$\mathbf{E} = \hat{x} \operatorname{Re} \{ E_o e^{\mp (\alpha + j\beta)z} e^{j\omega t} \} = \hat{x} | E_o | e^{\mp \alpha z} \cos(\omega t \mp \beta z + \angle E_o)$$

and accompanying magnetic fields

$$\mathbf{H} = \pm \hat{y} \operatorname{Re} \left\{ \frac{E_o}{\eta} e^{\mp (\alpha + j\beta)z} e^{j\omega t} \right\} = \pm \hat{y} \frac{|E_o|}{|\eta|} e^{\mp \alpha z} \cos(\omega t \mp \beta z + \angle E_o - \angle \eta).$$

• Propagation velocity

$$v_p = \frac{\omega}{\beta} = \frac{\omega}{\operatorname{Im}\{\sqrt{(j\omega\mu)(\sigma + j\omega\epsilon)}\}},$$

now depends on frequency ω and it describes the speed of the **nodes** (zero-crossings, not modified by the attenuation factor) of the field waveform. Subscript p is introduced to distinguish v_p — also called *phase* velocity — from $group\ velocity\ v_g$ discussed in ECE 450 (velocity of narrowband wave packets).

(a) Damped wave snapshot at t=0 together with exponential envelope

(b) Snaphot at t>0, with t=0 waveform for comparison

• β appears within cosine argument and determines the wavelength

$$\lambda = \frac{2\pi}{\beta}$$

and propagation speed

$$v_p = \frac{\omega}{\beta}.$$

• α controls wave attenuation by

$$e^{\mp \alpha z}$$

factor in propagation direction.

• Wavelength

$$\lambda = \frac{2\pi}{\beta} = \frac{v_p}{f}$$

now depends on frequency f via both the numerator and the denominator, and measures twice the distance between successive nodes of the waveform.

• Penetration depth (also called *skin depth* if very small)

$$\delta \equiv \frac{1}{\alpha} = \frac{1}{\text{Re}\{\sqrt{(j\omega\mu)(\sigma + j\omega\epsilon)}\}}$$

is the distance for the field strength to be reduced by e^{-1} factor in its direction of propagation.

– For a fixed σ , and a sufficiently large ω , the penetration depth

$$\delta \approx \frac{2}{\sigma \sqrt{\frac{\mu}{\epsilon}}}$$
 Imperfect dielectric formula

which can be very small if σ is large — with small δ the wave is severely attenuated as it propagates.

– For a fixed σ , and a sufficiently small ω ,

$$\delta \approx \sqrt{\frac{2}{\mu\omega\sigma}} = \frac{1}{\sqrt{\pi f\mu\sigma}}$$
 Good conductor "skin depth" formula

which, although small with large σ , increases as ω decreases, making low frequencies to be preferable in applications requiring propagating through lossy media with large σ , such as in sea-water.

(a) Damped wave snapshot at t=0 together with exponential envelope

(b) Snaphot at t>0, with t=0 waveform for comparison

- β appears within cosine argument and determines the wavelength

$$\lambda = \frac{2\pi}{\beta}$$

and propagation speed

$$v_p = \frac{\omega}{\beta}.$$

 $-\alpha$ controls wave attenuation by

$$e^{\mp \alpha z}$$

factor in propagation direction.