22 Phasor form of Maxwell’s equations and
damped waves in conducting media

e When the fields and the sources in Maxwell’s equations are all monochro-
matic functions of time expressed in terms of their phasors, Maxwell’s
equations can be transformed into the phasor domain.

— In the phasor domain all \/
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and all variables D, p, etc. are replaced by their phasors D, p, and
so on. With those changes Maxwell’s equations take the form shown
in the margin.

— Also in these equations it is implied that
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where €, p, and o could be a function of frequency w (as, strictly
speaking, they all are as seen in Lecture 11).

— We can derive from the phasor form Maxwell’s equations shown in
the margin the TEM wave properties obtained earlier on using the
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time-domain equations by assuming p = J = 0.
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We will do that, and and after that relax the requirement J = 0 with
J = oE to examine how TEM waves propagate in conducting media.

e With p = J = 0 the phasor form Maxwell’s equation &(e their 81mp 2gcled

forms shown in the margin. AWE E = M— ¢C
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the phasor wave equation above simplifies as
82 N ) _FS"I‘;
A2/ et PueB, = 0. £ e

where v is to be determined.



— Upon substitution into wave equation both of these lead to

(v? + w?ue)E, =0,

which yields ( T
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from which one possibility is _
V=7b
\/’y = 7B, with 0= w,/ue.
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Thus viable phasor solutions are

s \/ﬂi_eﬂmﬁz a)sgt ;,@Z)@@

\/\’"‘ A
as we already knew. VXE _26 B =4 H

— Furthermore, using the phasor form Faraday’s law it is easy to show

that
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Note that we have recovered above the familiar propertles
of plane TEM waves using phasor methods.
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Next, the phasor method carries us to a new domain that cannot be easily
examined using time-domain methods.
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e With p = 0 but J = oE = 0, implying non-zero conductivity o, the &355/,
pertinent phasor form equations are as shown in the margin.

— This is the same set as before, except that

V-E =0

V-H =0
@has been replaced by VxE = —'w,uﬂ

VxH = '

Thus, we can make use of phasor wave solutions above after applying
the following modifications to v and 7: = (04 jwe)E
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Note that the modified v and 7 satisty
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leading to useful relations shown in the margin (assuming real valued o = Re{g}
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. (a) Damped wave snapshot at t=0
e In terms of v and n above, we can express an x—polarlzet plane wave together with exponential envelope
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where F, is an arbitrary complex constant (complex wave amplitude). v\ﬁ_.._i

® In eXpanded fOTmS f)/ and 77 &ppeaf as: (b) Snaphot at t>0, with t=0 waveform

for comparison
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. . . . argument and deter-
1. In the special case of a perfect dielectric with o = 0, we find mines the wavelength

2

. . L )\:?
Y = jwy/pe = jp and n = o

and propagation speed
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as before. In this case a = 7 = 0.
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direction.



2. Another case of imperfect dielectric (or “lousy” conductor) occurs
when o is not zero, but it is so small that are justified in using

(1+ta)f ~=1=+pa, if |a] <1,

with p = 5 as follows: For = <1,
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Note: v and n both are complex valued, the consequences of which will

such that

be examined later on.

3. A third case of good conductor corresponds to 2 > 1. In that case,
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(a) Damped wave snapshot at t=0

}IeI1CE3 together with exponential envelope
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case E, — 0 as we will show later on. Wave fields cannot exist in perfect

conductors. |
(b) Snaphot at t>0, with t=0 waveform

for comparison
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Summarizing, in a homogeneous medium with arbitrary but con-

stant p, €, and o, time-harmonic plane TEM waves are in terms of \f‘*l[\ /’\ﬂ
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and accompanying magnetic fields
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now depends on frequency w and it describes the speed of the nodes o
a controls wave attenu-
(zero-crossings, not modified by the attenuation factor) of the field wave- ation by
form. Subscript p is introduced to distinguish v, — also called phase Fa

velocity — from group wvelocity v, discussed in ECE 450 (velocity of

factor in propagation
narrowband wave packets). direction.



e Wavelength
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now depends on frequency f via both the numerator and the denomi-
nator, and measures twice the distance between successive nodes of the
waveform.

e Penetration depth (also called skin depth if very small)
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is the distance for the field strength to be reduced by e~! factor in its

direction of propagation.

— For a fixed o, and a sufficiently large w, the penetration depth
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Imperfect dielectric formula

which can be very small if ¢ is large — with small 6 the wave is
severely attenuated as it propagates.

— For a fixed o, and a sufficiently small w,
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0~ = Good conductor "skin depth” formula
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which, although small with large o, increases as w decreases, making

low frequencies to be preferable in applications requiring propagat-
ing through lossy media with large o, such as in sea-water.
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(a) Damped wave snapshot at t=0

together with exponential envelope
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(b) Snaphot at t>0, with t=0 waveform
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