
21 Monochromatic waves and phasor notation
• Recall that we reached the traveling-wave d’Alembert solutions

E, H ∝ f(t ∓ z

v
)

via the superposition of time-shifted and amplitude-scaled versions of

f(t) = cos(ωt),

namely the monochromatic waves

A cos[ω(t ∓ z

v
)] = A cos(ωt ∓ βz),

with amplitudes A where

β ≡ ω

v
= ω

√
µε

can be called wave-number in analogy with wave-frequency ω.

T =
2π

ω

cos(ωt)

t

1

-1

Period

λ =
2π

β

cos(βz)

z

1

-1

Wavelength

– As depicted in the margin, monochromatic solutions A cos(ωt∓βz)
are periodic in position and time, with the wave-number β being
essentially a spatial-frequency, the spatial counterpart of ω.

This is an important point that you should try to understand
well — it has implications for signal processing courses related
to images and vision.
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– In general, monochromatic solutions of 1D wave-equations ob-
tained in various branches of science and engineering can all be rep-
resented in the same format as above in terms of wave-frequency
/ wave-wavenumber pairs ω and β having a ratio

v ≡ ω

β

recognized as the wave-speed and specific dispersion relations
such as:

T =
2π

ω

cos(ωt)

t

1

-1

Period

λ =
2π

β

cos(βz)

z

1

-1

Wavelength

Dispersion relations
between
wavefrequency ω
and
wavenumber β
determine the
propagation veloc-
ity

v =
ω

β
= λf

for all types of
wave motions.

1. TEM waves in perfect dielectrics:

β = ω
√

µε,

2. Acoustic waves in monoatomic gases with temperature T (K)
and atomic mass m (kg):

β = ω
√

m
5
3KT

,

3. TEM waves in collisionless plasmas (ionized gases) with plasma
frequency ωp =

√
Ne2

mεo
:

β =
1

c

√
ω2 − ω2

p.
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– For any type of wave solution — TEM, acoustic, plasma wave
— once the dispersion relation is available (meaning that it has
been derived from fundamental physical laws governing the specific
wave type), wave propagation velocity is always obtained as

v =
ω

β

or, equivalently, as
v =

λ

T
= λf

where
λ ≡ 2π

β
Wavelength

and
T =

2π

ω
≡ 1

f
Waveperiod.

cos(ωt − βz)

z

cos(ωt − βz)|t=0

ω

β
t

z
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• Monochromatic x-polarized waves

E = Eo cos(ωt ∓ βz) x̂
V
m

can also be expressed in phasor form as

Ẽ = Eoe
∓jβz x̂

V
m

such that
Re{Ẽejωt} = Eo cos(ωt ∓ βz) x̂ = E

in view of Euler’s identity.

Example 1: Study the following table to understand monochromatic wave
fields and their phasors.

Field Phasor Comment
E = cos(ωt + βy) ẑ Ẽ = ejβy ẑ z-polarized wave propagating in −y direction

H̃ = −ejβy

η x̂ magnetic phasor that accompanies Ẽ above
H = sin(ωt − βz) ŷ H̃ = −je−jβz ŷ wave propagating in +z direction

Ẽ = −jηe−jβz x̂ electric field phasor of H̃ above
E = η sin(ωt − βz) x̂ which is an x-polarized field (see the right column)
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Example 2: Given that

H = x̂H+ cos(ωt − βz) + ŷH− sin(ωt + βz)

representing the sum of wave fields propagating in opposite directions, the corre-
sponding phasor

H̃ = x̂H+e−jβz − jŷH−ejβz.

The corresponding E-field phasor is

Ẽ = −ŷηH+e−jβz + jx̂ηH−ejβz,

from which

E = −ŷηH+ cos(ωt − βz) − x̂ηH− sin(ωt + βz).

Make sure to check that all the signs make sense, and if you think you have
caught an error, let us know.

• In general, we transform between plane TEM wave phasors Ẽ and H̃
as follows:

1. To obtain H̃ from Ẽ: divide Ẽ by η and rotate the vector direction
so that vector S̃ ≡ Ẽ × H̃∗ points in the propagation direction of the
wave — more on complex vector S̃ later on.

2. To obtain Ẽ from H̃: multiply H̃ by η and rotate the vector direction
so that vector S̃ ≡ Ẽ × H̃∗ points in the propagation direction of the
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wave.
y

z

E+ = −x̂
η

2
f(t − z

v
)

H− = ŷ
1

2
f(t +

z

v
)

E− = −x̂
η

2
f(t +

z

v
)

Js = x̂f(t)

S+

S−

Example 3: On z = 0 plane we have a monochromatic surface current specified as

Js = x̂f(t) = x̂2 cos(ωt)
A
m

= Re{x̂2 ejωt}.

Determine wave field phasors Ẽ± and H̃± for plane TEM waves propagating away
from the z = 0 surface on both sides (assumed vacuum).

Solution: We know that an x-polarized surface current f(t) produces

Ex = −η

2
f(t ∓ z

v
) and Hy = ∓1

2
f(t ∓ z

v
)

in surrounding regions. Given that f(t) = 2 cos(ωt), this implies

Ex = −η cos(ωt ∓ βz) and Hy = ∓ cos(ωt ∓ βz)

where
β =

ω

c
and η = ηo ≈ 120π Ω

since the current sheet is surrounded by vacuum. Converting these into phasors,
we find

Ẽ± = −ηe∓jβzx̂ and H̃± = ∓e∓jβzŷ.
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y
z

E+ = −x̂
η

2
f(t − z

v
)

H− = ŷ
1

2
f(t +

z

v
)

E− = −x̂
η

2
f(t +

z

v
)

Js = x̂f(t)

S+

S−

• In the last lecture we calculated the time-average E×H and Js ·E of
the fields examined in Example 3 using a time-domain approach. The
same calculations can be carried out in terms of phasors Ẽ, H̃, and J̃s

as follows:

〈E × H〉 =
1

2
Re{Ẽ × H̃∗} and 〈Js · E〉 =

1

2
Re{J̃s · Ẽ∗}

where Ẽ× H̃∗ ≡ S̃ is called complex Poynting vector. Instantaneous power

p(t) = v(t)i(t)

with time-harmonic signals is

v(t)i(t) = (
V ejωt + cc

2
)(

Iejωt + cc
2

)

where V and I are phasors of v(t) and
i(t) and cc indicates the conjugate of
the term to the left of + sign.
This can be expanded as

v(t)i(t) =
V I∗ + cc

4
+

V Iej2ωt + cc
4

.

The second term has a zero time aver-
age. It follows that time-average power

〈v(t)i(t)〉 =
V I∗ + cc

4
=

1
2
Re{V I∗}

since

V I∗ + cc = V I∗ + V ∗I = 2Re{V I∗}.

(Also see ECE 210 text.)

– The proof of these are analogous to the proof of

〈p(t)〉 =
1

2
Re{V I∗}

for the average power of a circuit component in terms of voltage and current
phasors V and I (see margin).

For, instance, given that

J̃s = 2x̂
A
m

and Ẽ±(z) = −ηe∓jβz x̂
V
m

in Example 3, it follows that

〈−Js(t) · E(0, t)〉 =
1

2
Re{−J̃s · Ẽ∗(0)} = η ≈ 120π

W
m2

,

in conformity with the result from last lecture.
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