20 Poynting theorem and monochromatic waves Ao
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This interpretation of the Poynting vector is obtained from a conservation
law extracted from Maxwell’s equations (see margin) as follows:
1. Dot multiply Faraday’s law by H, dot multiply Ampere’s law by E, V:-D =p
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2. After re-arrangements shown above, the result can be written as
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e Poynting theorem derived above is a conservation law just like the
continuity equatio g@) + 0: Poynting theorem
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is time rate of change of total electric and magnetic energy den-

sity.
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Hence, Poynting theorem is the conservation law for electro-
magnetic energy, just like continuity equation is the conservation law
for electric charge.

— The second term
V- (E x H)
accounts for energy transport in Poynting theorem, just like V - J

accounts for charge transport in the continuity equation. There-
fore
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is energy flux per unit area measured in
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Finally, the last term in Poynting theorem (repeated in the mar-
gin),

units, just like J is charge flux per unit area in units.

J-E

is called Joule heating, and it represents power absorbed per
unit volume (which can only be non-zero in the presence of J).

If J-E is negative in any region, then J in that region is acting as a
source of electromagnetic energy, just like any circuit component
with negative vt is acting as an energy source in the electrical
circuit.

Note that J - E had a negative value on the current sheet radiator
examined in last lecture. We return to the current sheet radiator
in the next example.
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Example 1: On z = 0 plane we have a time-harmonic surface current specified as

A

Js=2f(t) =22 t) —
B (1) = 32 cos(wt) =~
where w is some frequency of oscillation. jf(-ﬁ) =
(a) Determine the radiated TEM wave fields E(z,t) and H(z,t) in the regions z 2 0,

(b) The associated Poynting vectors E x H, and

(c) Js - E on the current sheet. > )
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(a) With reference to the solution of/the current sheet radiator depicted in the margin

rom last lecture), we that an f-polarized surface curren produces the wave
f last lect that larized surf. t f(t d th
fields
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in the surrounding regions propagating away from the current sheet on both sides.

Given that f(t) =(2)cos(wt), this implies that

E, = @cos(wt q@ and H, :@cos(wt F G2)
where ~7

L) S ~A7 =2
o0 ,) Wove WP - l 6= and 17 =mn,~ 1207 Q —Z 727[
— - . \_/'\/'\_,_—

r) _ since the current sheet is surrounded by vacuum. Hence in vector form we have

~> E(z,t) :@ncos(wt F Bz)@X and H(z,1t) =@ cos(wt F Bz @m?

where the upper signs are for z > 0, and lower signs for z < 0.
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(b) The associated Poynting vectors are | ),07]'
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Note that the time-average value of vector S points in the direction of wave
propagation on both sides of the current sheet.

(¢) Since on z = 0 surface of the current sheet the electric field vector is

E(0,t) = —ncos(wt)t —
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it follows that J, - E on the same surface is >
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e In the above example, a time-harmonic source current oscillating at
some frequency w produced “monochromatic waves” of radiated fields

propagating away from the current sheet on both sides.

— The calculations showed time-varying Poynting vectors E x H.

The time-averaged values of these time-varying vectors can be eas-
ily determined by making use of the trig identity

cos?(wt + @) = ;[ + cos(2wt + 2¢)].
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Since the time-average of the second term on the right is zero, we
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can express the time-average of this identity as

(cos*(wt + ¢)) = %[1 + cos(2wt + 2¢)])
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Consequently, the result
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which represent the time-average power per unit area transported by
the waves radiated by the current sheet.

In Poynting theorem the Joule heating term J - E is power absorbed
per unit volume, and, accordingly, @ is power injected per
unit volume.

— Likewise, +J-E can be interpreted as power absorbed /injected
per unit area on a surface.

In Example 1 above we calculated an instantaneous injected power
density of
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Clearly, its time-aveage works out as
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— Note that (—J, - E) exactly matches the sum of |(E x H)| calcu-
lated on both sides of the current sheet, in conformity with energy
conservation principle (Poynting theorem).



