18 Wave equation and plane TEM waves in source-
free media

With this lecture we start our study of the full set of Maxwell’s equations
shown in the margin by first restricting our attention to homogeneous and
non-conducting media with constant € and p and zero o.

e Our first objective is to show that non-trivial (i.e., non-zero) time-
varying field solutions of these equations can be obtained even in the
absence of p and J.

— We already know static p and J to be the source of static electric
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and magnetic fields.

— We will come to understand that time varying p and J, which
necessarily obey the continuity equation

dp B \/

constitute the source of time-varying electromagnetic fields.
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Despite these intimate connections between the sources p and J and

the fields
D=¢E and B =puH,

non-trivial field solutions can exist in source-free media as we will see
shortly.



e Such field solutions in fact represent electromagnetic waves, a familiar
example of which is light.

e Another example is radiowaves that we use when we communicate
using wireless devices such as radios, cell-phones, WiF1i, etc.

e Different types of electromagnetic waves are distinguished by their os-
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going across the electromagnetic spectrum from low to high fre-
quencies.

We are well aware that these types of electromagnetic waves can travel
across empty regions of space — e.g., from sun to Earth — transporting
energy and heat as well as momentum.

— Next, we will discover their general properties by examining Maxwell’s
equations under the restriction p =J = 0.



e In source-free and homogeneous regions where p = J = 0 and € and
1 are constant, we can simplify Maxwell’s equations as shown in the
margin.

— If there are non-trivial solutions of these equations, namely E(r, t) #
0 and H(r,t) # 0, they evidently need to be divergence-free.

— They also have to be “curly” according to the last two equations:
Faraday’s and Ampere’s laws. pad

e Next we will make use of vector identity y )

—~> VX(VXE)—WE)—VQE

which should be familiar from an earlier homework problem.

— Since the electric field E is divergence-free in the absence of sources,
this identity simplifies as R
J. ¢
V x(VxE)=-VE

~ T —
where in the right side V?E is the Laplacian of E.

— Using this result we can express the curl of Faraday’s law as
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which can be written explicitly as E(x, 3 2t ) 3D vector
wave
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Recall that our objective is to see whether a non-trivial time-varying solution
of Maxwell’s equations can exist in source-free media.

Our objective at this stage is not finding a general solution; it is instead
identifying a simple example of a non-trivial time-varying E(r, ), if we can.

For example, can a field solution \&
E(r,t) =2F,(z)t) <
Ce

that only depends on z and ¢ and “polarized” in x-direction exist? If it can
exist, what would be the properties of this z-polarized solution? E JC;eL& AAreat\m — I)olaﬁz@(

e To find out, we note that with E = 2 F,(z, ) the above “wave equation” |

is reduced to , L 1D scalar Uo &5 =0z
—— 0" Fa — / \/(\,— wave

0z o atQ 7 equation
an equation that is known as a 1D scalar wave equation, as opposed

to the 3D vector wave equation above.

— Now, by substitution, we can easily show that \/

v//]Ex = cos(w(tg\@z)), Cod (w (1- ) Cow=
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satisfies the 1D wave equation and represents an z-polarized time-
periodic field solution with an oscillation frequency w.

— 1D wave equation can also be satisfied by
E, = cos(w(t @\/,uez)).
—

Let us jointly refer to these solutions as

-2 dareOfA}fr\

B, = cos(w(t F =),

where

has the dimensions of m/s (i.e., velocity) and the algebraic signs F
distinguish between the “travel directions” of these possible “wave solu-
tions” as elaborated later on.

e Let us next find out the magnetic field intensity H that accompanies

the z-polarized electric field wave solution

\/E = zcos(w(t @f))
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— Since the curl of E is
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Faraday’s law
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requires that H should satisty
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Finding the time-dependent anti-derivative (and remembering v =

1/\/p€), we obtain

H = &) /- £ Y ’

/=G cosle &)

e The results above, namely our z-polarized non-trivial field solutions of T
Maxwell’s equations in source-free homogeneous space, can be repre- > B ”
sented more compactly as J E=2zf(t+ ;)
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is the field waveform,
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is known as intrinsic impedance (an measured in units of ohms).
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invariant (LTT), the field solutions above can be further generalized by WEAE VRN Yy !
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using their weighted and time-shifted superpositions such as , V_EE& :Z j;j; .
022 ,;z(,;z), fos C')(ffl
f(t) = Z A, cos(wpt + 60,,) 2 (a2
' oV DB flyrd) |
- R . %%’5 = f(¢75) |
f(t) = — / Flw)etduw
2T J_ oo

having frequency dependent weighting factors A,, and F'(w). And since
according to Fourier analysis all practical signals f(t) can be synthe-
sized in these forms, it follows that the field solutions above are valid
with arbitrary waveforms f(t). d’Alembert

t wave
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Solutions

2z solutions
@\/E, Ho f(tF-)
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of the 1D scalar wave equation with arbitrary f(t) are known as d’Alembert
wave solutions.

e d’Alembert solution s
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describes electromagnetic waves traveling in +z direction, whereas so-
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Traveling wave in +z direction with speed v=c:
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describes electromagnetic waves traveling in —z direction (see margin).
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it by 90° so that vector E x H points in direction the waves travel. LG
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e E can be obtained from H by multiplying it with 1 and rotating it by : - -
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exist because they would violate the divergence-free condition V-E = 0. ot T



