
15 Inductance — solenoid, shorted coax
• Given a current conducting path C, the magnetic flux Ψ linking C can

be expressed as a function of current I circulating around C. Ψ

I

I, E = −L
dI

dt

V (t) = L
dI

dt
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• If the function is linear, i.e., if we have a linear flux-current relation

Ψ = LI,

then constant
L =

Ψ

I

is termed the self-inductance1 of path C, an elementary inductor.

– Differentiating the flux-current relation with respect to time t, and
using the fact that

E = −dΨ

dt
,

we find that the emf of inductor L is simply

E = −L
dI

dt
,

which is a voltage rise across the inductor in the direction of cur-
rent I (with LdI

dt denoting the voltage drop in the same direction
as used in circuit courses).

1A mutual inductance M12, by contrast, relates the flux linking coil C2 to a current I1 flowing in a
second coil C1.
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– For an inductor consisting of n-loops, the emf E measured around
n-loops is naturally

E = n(− d

dt
Ψ) = − d

dt
nΨ ≡ −L

dI

dt

implying an inductance
L ≡ nΨ

I
.

Example 1: An n-turn coil has a resistance R = 1Ω and inductance of 1µH. If it is
conducting 3 A of current at t = 0, determine I(t) for t > 0.

Solution: Current flow in the resistive n-turn coil will be driven by emf E = −LdI
dt

matching the voltage drop RI . Hence

−L
dI

dt
= RI ↔ dI

dt
+

R

L
I = 0 ⇒ I(t) = I(0)e−

R
L t = 3e−106t A.

• As illustrated by above example, current I around a resitive loop C will
in general be obtained by solving a differential equation constructed
using the emf of the loop.

– I = E
R used last lecture assumes that emf produced by the induced

current is small compared to an externally produced emf.

• We continue with typical inductance calculations.
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Inductance of long solenoid: Consider a long solenoid with length !,
cross-sectional area A, and a density of N loops per unit length as examined
in Example 3 of Lecture 12 (see figure in the margin). As determined in
Example 3, the magnetic flux density in the interior of the solenoid is

!

B = ẑB

I

B = µoIN

B = µoINẑ

while n = N! is the number of turns of the solenoid. Thus, the inductance
of the solenoid with n = N! turns is

L =
nΨ

I
=

N!(µoIN)A

I
= N2µoA!.

• As we know from our circuit courses, an inductor L such as the solenoid
coil considered above can be used to store energy. An inductor con-
nected to an external circuit with a quasi-static current I develops a
voltage drop V = LdI

dt across its terminals2 and absorbs power at an
instentaneous rate

P = V I = L
dI

dt
I =

d

dt
(
1

2
LI2),

implying a stored energy of

W =
1

2
LI2 =

1

2
N2µoA!I

2 =
|Bz|2

2µo
A! =

1

2
µo|Hz|2A!

in an inductor in a conducting state.
2Assuming a physical size much smaller than a wavelength λ = c/f for the highest frequency in I(t).
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• Notice that the stored energy of the solenoid is

1

2
µo|Hz|2 =

1

2
µoH · H

times its volume A! occupied by the field H inside the solenoid. That
suggests that

w =
1

2
µoH · H

can be interpreted as stored magnetostatic energy per unit volume in
general.

– Also both inductance L and stored energies W and w would have
µ replacing µo in material media with permeabilities

µ = (1 + χm)µo

and magnetic susceptibilities χm, in analogy with the concepts of
permittivity ε = (1 + χe)εo and electrical susceptibility χe.

◦ Permeability and magnetic susceptibility notions will be ex-
amined in a future lecture.
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Inductance of shorted coax: Consider a coaxial cable of some length !
which is “shorted” at one end (with a wire connecting the inner and outer
conductors), so that a steady current I can flow on the inner conductor of
radius a to return on the interior surface of the outer conductor at radius
b after having circulated through the short. We will next determine the
inductance L of such an inductor after first computing the magnetic flux
density Bφ that will be produced by the inner conductor current I. In Bφ

calculation we will assume ! & b so that an “infinite coax” approximation
can be invoked.

!
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Shorted coax circulates
a current I linking a
magnetic flux 
confined to a region
bounded by the outer
conductor of the coax.

Ψ• Expanding the integral form of Ampere’s law
∮

C
B · dl = µoIC

as
Bφ2πr = µoI

over a circular integration contour C of a radius r > a, we find that
the magnetic flux density in the interior of the coax cable is

Bφ =
µoI

2πr
.

• Therefore, the magnetic flux linked by the closed current path I (see
figure in the margin) is

Ψ =

∫

S
B · dS = !

µo

2π
I

∫ b

a

dr

r
= !

µo

2π
ln

b

a
I.
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Clearly, we have a linear relation Ψ = LI, with

L ≡
ln b

a

2π
!µo,

which is the inductance of a shorted coax of a finite length !.

– The inductance of the coax per unit length is

L =
ln b

a

2π
µo,

which should be contrasted with capacitance per unit length

C =
2π

ln b
a

εo

of the same coax configuration.
Notice how L and C are proportional to εo and µo, respectively,
having proportionality constants which are inverses of one another.
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Inductance of shorted parallel plates: If a pair of parallel plates of
areas A = W ! and separation d were shorted at one end, we would obtain
effectively an inductor with a per length inductance

L =
d

W
µo

that accompanies per length capacitance

C =
W

d
εo

of the same parallel plate configuration. This follows from a generalization of
our finding above that the proportionality constants of L and C are arithmetic
inverses of one another.
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