13 Current sheet, solenoid, vector potential and
current loops

In the following examples we will calculate the magnetic fields B = u,H
established by some simple current configurations by using the integral form

of static Ampere’s law. jg'g . Ol—é = Yo L,
C

Example 1: Consider a uniform surface current density J; = J;Z2 A/m flowing on
x = 0 plane (see figure in the margin) — the current sheet extends infinitely in
y and z directions. Determine B and H.

Solution: Since the current sheet extends infinitely in y and z directions we expect B
to depend only on coordinate x. Also, the field should be the superposition of the
fields of an infinite number of current filaments, which suggests, by right-hand-
rule, B = gB(x), where B(z) is an odd function of z. To determine B(x), such

As shown in Example 1 mag-
netic field of a current sheet

is independent of distance

that B(—xz) = —B(x), we apply Ampere’s law by computing the circulation of | |z| from the current sheet.
B around the rectangular path C' shown in the figure in the margin. We expand | A1.0 H chan ges discontinu-
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Example 2: Consider a slab of thickness W over —% <z < % which extends in-

finitely in y and z directions and conducts a uniform current density of J = 2.J,
A/m?. Determine H if the current density is zero outside the slab.

Solution: Given the geometric similarities between this problem and Example 1, we
postulate that B = gB(x), where B(x) is an odd function of z, that is B(—x) =
—B(x). To determine B(x) we apply Ampere’s law by computing the circulation
of B around the rectangular path C' shown in the figure in the margin. For

x < %, we expand
jl{ B-dl = ,u((]c )
c

/B )L+ 0 — L+0=p,J,2tL = B(z)=pJy.
+0— B(=2)L+0 = poJo22L, () = podox

For x > %, the expansion gives UA/-\/J

\/B(x)L +0—B(—2)L+0=pJ,WL|= B(x)= pioJ,—.

as

Hence, we find that

"o gJyx, S x| < &
§Jo5-sgn(x), otherwise.

Note that the solution plotted in the margin shows no discontinuity at x = i%

or elsewhere.

The figure in the margin depicts a finite section of an infinite solenoid.
A solenoid can be constructed in practice by winding a long wire into a
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multi loop coil as depicted. A solenoid with its loop carrying a current [
in ¢ direction (as shown), produces effectively a surface current density of
J, = IN¢ A/m, where N is the number density (1/m) of current loops in
the solenoid. In Example 3 we compute the magnetic field of the infinite
solenoid using Ampere’s law.

Example 3: An infinite solenoid having N loops per unit length is stacked in z-
direction, each loop carrying a current of I A in counter-clockwise direction when
viewed from the top (see margin). Determine H.

Solution: Assuming that B = 0 outside the solenoid, and also B is independent of
z within the solenoid, we find that Ampere’s law indicates for the circulation C

shown in the margin A .
~
\/%Bdl:uolc = LB=pu,INL.
C o Z"‘ A}
This leads to / Mmoo

B : and H = 2IN

for the field within the solenoid.

The assumption of zero magnetic flux density B = 0 for the exterior region is justified
because:
(a) if the exterior field is non-zero, then it must be independent of x and y (follows

from Ampere’s law applied to any exterior path C' with I = 0), and

(b) the finite interior flux ¥ = p,I Nma® can only be matched with the flux of
the infinitely extended exterior region when the constant exterior flux density

(because of (a)) is vanishingly small.

A

v

Infinite solenoid
with N loops per
unit length carrying
I amps per loop




e Static electric fields: Curl-free and are governed by
VXE=0, V-D=p where D = €¢E
with € = €,¢,.

e Static magnetic fields: Divergence-free and are governed by

,?Xv.]?,:()7 V xH=J where B=uH OL‘DD[Qm(ﬁrwﬁb][dD( /\/
with u = prp, — relative permeabilities p, other than unity (for free dioole Sloctric.
fl?

7%(0( |

space) will be explained later on.

Mathematically, we can generate a divergence-free vector field B(z,y, 2)

Vn(/ﬂB-VXA) —

by taking the curl of any vector field A = A(x,y, z) (just like we can generate
a curl-free E by taking the gradient of any scalar field =V (x,y, 2)).
Verification: Notice that

as

0 0 0
9r oy 0z
V-VxA = a(VXA) +3(V><A) +3(V><A) o 85 g
— Ox 0y 0z a Ay AZ

0 (8AZ B 8Ay) 0 (8AZ B 8143;) s, (8A 0A,
Oz Oy 0z dy " Ox 0z 0z Ox oy ' =

o [f B =V X A represents a magnetostatic field, then A is called mag-

netostatic potential or vector potential.
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— Vector potential A can be used in magnetostatics in similar ways
to how electrostatic potential V' is used in electrostatics.

o In electrostatics we can assign V' = 0 to any point in space
that is convenient in a given problem.

o In magnetostatics we can assign V - A to any scalar that is
convenient in a given problem.

— For example, if we make the assignment!

G/ va=0  ond o =B

then we find that &:w[/mwué ﬁO\MﬁQ .
9 U

xB:vxVxA:ng-A)—VQA:—va.

This is a nice and convenient outcm\n;, because, when combined with

VxH=J = VXB:,LLOJ

it produces

which is the magnetostatic version of Po1sson s equation
—A

solve. \/v2v_ O(W I/ E =

IWith this assignment — known as Coulomb gauge — A acquires the physical meaning of “potential
momentum per unit charge”, just as scalar potential V' is “potential enegy per unit charge” (see Konopinski,
Am. J. Phys., 46, 499, 1978).

SDIA/Q. \/VQA— — lhod f(jr A (—é\:
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— In analogy with solution

\/v\ny(r) = / @r/’d?’r' N

dme,|lr — Ev

of Poisson’s equation, it has a solution

s an = [ BTl 2

Given any static? current density J(r), the above equation can be used to

obtain the corresponding vector potential A that simultaneously satisfies

V-A=0 and V x A =B.

Once A is available, obtaining B = V x A is then just a matter of taking a
curl.

e Magnetic flux density B of a single current loop I can be calculated
after determining its vector potential as follows:

— For a loop of radius a on z = 0 plane, we can express the corresponding current

density as
J(r') =16(2)o(\/ 22+ y? — a)

where the ratio on the right is the unit vector qg’ :

(_yla xla 0)

— Inserting this into the general solution for vector potential, and performing
the integration over z’, we obtain

2Also, in quasi-statics we use J(r’, ) to obtain A(r,¢) and B = V x A over regions small compared to
A =c/f, with f the highest frequency in J(r’, ).

o A
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N AN,
A(r) = a /5(\/:13’2+y’2—a) (=4, ,0) dx'dy’

4m V@ =22+ (y— )+ 22?1
N AR
- A /5(7“' —a) =y, 2. 0) r'dr'de’
dm Ve =2+ y—y)?+ 2
OI T - i /, /, O N R
= # (zasing’,acos¢’,0) d¢' = 2 A.(r) + §A,(r).

Ar )z \/(x —acos¢)? + (y — asin¢')? + 22
Given that A, = 0, it can be shown that B =V x A leads to

V

Or Jy

From the expected azimuthal symmetry of B about the z-axis, it is sufficient
to evaluate these on, say, y = 0 plane — after some algebra, and dropping the
primes, we find, on y = 0 plane,

woal [T 2COoS @
4 /_W (22 + a? + 22 — 2ax cos ¢)3/? ¢
woal [T Zsin ¢
B, = d
Y 4rm /_W (22 + a2 + 22 — 2ax cos ¢)3/2 ¢,
and ;o 5
Lo a — T COS
B, = do.
4t /_7T (22 + a? + 22 — 2ax cos ¢)3/2 ¢

We note that B, = 0 since the B, integrand above is odd in ¢ and the
integration limits are centered about the origin. Hence, the field on y = 0

plane is given as
B=2B,+ 2B,

with B, and B, defined above.

There are no closed form expressions for the B, and B, integrals above for an
arbitrary (z, z).



o However, it can be easily seen that if x = 0 (i.e., along the z-axis), B, = 0
(as symmetry would dictate) and

B _uoaI/” a b= pola® v
z 2 1 .2\3/2°7 2 1 .2)3/2" SN
) o (a® + 2%)% 2(a? + 22)%/ \:E\QH ;;;/?ﬁ/
For |z| > a, :::\Q ; ; ;/ﬁi::
_ Hola? ohse [0 LT
Bz ~ W? E///kk\ \ \,ﬂ\\\,
IS SN
which is positive and varies with the inverse third power of distance |z|. 5 k k Kkg ‘/U) ,/l ) ]
s \Si‘::j/ 5
— Also, B, and B, integrals can be performed numerically. Figure = 77/ ] ;;in««
in the margin depicts the pattern of B on y = 0 plane for a loop | jjjjjf AN §§§§§§ :
of radius @ = 1 computed using Mathematica. - =
NENENNNY ; h / S e
e Note that circulation fCB - dl around each closed field line (“linking” M,:::ii S ; ; 2 it
the current loop) equals a fixed value of u,I — this dictates that the . TN TR
- T e | L ]
ayerage field strength |B| of a current loop is stronger.on Sh.ort.er field 0/(7/ // /<>\ /4\\\ \\1\
lines closer to the current loop than on longer field lines linking the}fof Y\li i\\\!}g/j g;léi ;)/2 )
loop further out. As a result |B| can be shown to vary as 72 for large ™ l\bjﬁf AN
r ol PN T
—600] ‘/'//"//‘/‘ f \ ‘\‘\\“\\*\‘ 1
e [t can be shown that the equations for magnetic field lines of a current — o

loop on, say, y = 0 plane, can be expressed as
r = Lsin® 0

in terms of radial distance r from the origin and zenith angle 6
measured from the z axis. Clearly, parameter L in this formula is the
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radial distance of the field line on 6 = 90° plane, and the field line Bl
formula is accurate only for » > a. The Earth’s magnetic field had
such a magnetic dipole topology as shown.

Lorentz force due to the magnetic fields of a pair of current loops — also
known as magnetic dipoles — turns out to be “attractive” when the cur-
rent directions agree (see margin). Bar magnets carrying “equivalent”

Loops with parallel

current loops of atomic origins interact with one another in exactly the currents attract one

same way — i.e., as governed by the second term of Lorentz force.



