Lecture 8

1 Poisson's and Laplace's equations

1.1 Laplacian

From Gauss's Law $\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$ (valid for electrostatic and electromagnetic field), for electrostatic field, we have $\vec{E} = -\nabla V$, then

$$\nabla \cdot \vec{E} = \nabla \cdot (-\nabla V) = \frac{\rho}{\varepsilon_o}$$

We define Laplacian $\nabla^2 V = \nabla \cdot \nabla V$ as $\nabla^2 \equiv$

1.2 Poisson's equations

For an electrostatic potential,

$$\nabla^2 V = \frac{\rho}{\varepsilon_o}$$

Solving the Poisson equation amounts to finding the electric potential V for a given charge distribution ρ .

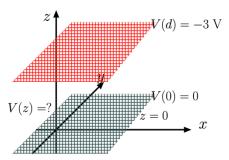
1.3 Laplace's equations

A special case of Poisson's equation for charge free regions where $\rho(x, y, z) = 0$ is the Laplace's equation

$$\nabla^2 V = 0$$

2 Examples

2.1 Infinite parallel plates

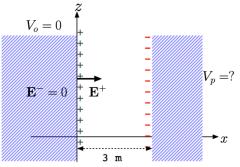


Consider a pair of infinite parallel conducting plates at the z = 0 and z = 2 m planes. The plate at z = 0 is grounded. The plate at z = 2 m is held at a constant potential V = -3 V.

- Due to the symmetry of the geometry, E field is only pointing perpendicular to the plate.
- Relation between \vec{E} and V in 1D case is V = Ed, where d is the separation of the plates.

- Solution of 1D case is a linear function V(z) = Ax + B.
- The constants A and B can be determined by the potential on two planes.

2.2 Double-slab problem



A pair of copper blocks separated by a distance d=3m in x direction, hold surface charge densities of $\rho_s=\pm 2\frac{c}{m}$ on x=0m and x=3m surfaces, respectively. The blocks are assigned constant potentials V=0 and V_p . What is the potential difference V_p ?

- The field \vec{E} inside each block is _____.
- $^{3 \text{ m}}$ Due to the symmetry of the geometry, \vec{E} field is only pointing in direction.
- Consider the positively charged infinite sheet at x = 0m, boundary condition is

$$\hat{x} \cdot (\vec{D}^+ - \vec{D}^-) = \rho_s$$

• The problem is again 1D problem. Relation between \vec{E} and V in 1D case is V = Ed

3 Solution to Poisson's Equation

Recall the electric field $\vec{E}(\vec{r})$ and the electrostatic potential $V(\vec{r})$ from a single charge Q at the origin are:

$$\vec{E}(\vec{r}) =$$
 $\propto 1/r^2$

$$V(\vec{r}) = \propto 1/r$$

Consider a point charge shifted to location \vec{r}' , the potential $V(\vec{r}) = \frac{Q}{4\pi\varepsilon_0|\vec{r}-\vec{r}'|}$

For a small cube located at \vec{r}' inside a charged region with charge density ρ , the total charge inside is $\rho(\vec{r}')d^3\vec{r}'$

Use superposition, for an arbitrary ρ existing over a finite region in space,

$$V(\vec{r}) = \int$$

Where \vec{r} is the observation location, and \vec{r}' is the dummy variable for every location inside the charged region.

4 Summary of electrostatic field solutions

4.1 From V to \vec{E}

$$\vec{E} =$$

4.2 From \vec{E} to \vec{V}

$$V =$$

4.3 From \vec{E} to ρ

$$\rho =$$

4.4 From ρ to V

$$V =$$

4.5 From V to ρ

$$\vec{E} =$$

4.6 From ρ to \vec{E}

$$\vec{E} =$$

5 Conductor

The field inside a perfect electric conductor (PEC) $\vec{E} =$

The charge density inside a PEC $\rho =$ _____

This is because after the conductor is inserted in to the region where \vec{E}_o exists, free charges will pile up on the surface of the conductor, and produce a secondary field that cancels out the original \vec{E}_o , and create zero electric field inside the conductor.

 $\vec{E} = 0$ inside the conductor implies that the entire conductor region is equipotential.