
## Lecture 39

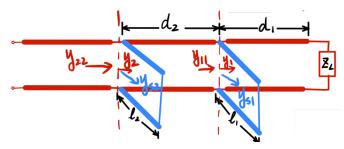
## 1 Single-stub tuning with open ended stub



We can also use and open-ended red TL for the single-stub tuning and get a matched impedance.

- a) Find position  $d_1$  where to insert the open-ended stub;
- b) Calculate normalized admittance  $y(d_1)$  for the black TL.
- c) Calculate normalized admittance  $y_{stub}$  for the red TL.
- d) Find the length  $l_s$  of the red shorted-stub.

Part a-c will be exactly the same as the shorted-stub.


Part d). we need to rotate from open-ended load side to  $y_{stub}$ .

- For open terminal, the admittance  $y_{LS} = 0$ .
- Rotate  $y_{LS}$  towards generator to  $y_{stub}$ , to find the length of the red TL  $l_s$ .

Disadvantage of single-stub tuning:

- a) For different load impedance  $Z_L$  or frequency, the position  $d_1$  and stub length  $l_s$  will be changing.
- b) It's very difficult to find the exact position  $d_1$  on the original transmission line.

## 2 Double-stub tuning with short ended stub



• Position  $d_1$  and  $d_1$  are fixed (easy to implement)

For example,  $d_1 = 0$  or  $\lambda/4$ ;

$$d_2 = \lambda/8$$
,  $\lambda/4$ , or  $3\lambda/8$ 

• Stub length  $l_{s1}$  and  $l_{s2}$  are varying with different  $Z_L$ 

Step 1: normalize load impedance  $z_L$ 

Step 2: plot  $z_L$  on Smith chart

## Step 3: Find $y_L$ on smith chart

Extend the  $z_L$  point through the center of the Smith Chart (in opposite direction, 180°, with same distance)

Step 4: Draw (1+jb) circle and rotate it with the distance  $d_2$  chosen for the solution,

$$(d_2 = . )$$

Step 5: Move on constant real value circle, until it intersect the *rotated* (1+ jb) circle

Step 6: Find the difference between  $y_1$  (same as  $y_L$  for this example) point and  $y_{11}$ 

$$y_{s2} = y_{11} - y_L$$

Step 7: Calculate the shunt line length  $l_1$ 

From short circuit point for admittance to this susceptance value

Step8: find the corresponding point for  $y_{11}$  on the original (1 + jb) circle

Step 9: find the susceptance of second stub

Step 10: calculate the shunt line length  $l_2$