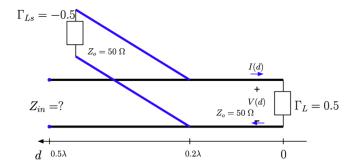
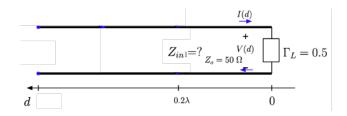
Lecture 37

1 Example – shunt connect TL problem

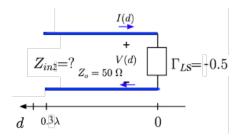
Example 4: A TL of length l=0.5 λ and $Z_o=50$ Ω has a load reflection coefficient $\Gamma_L=0.5$ and a shunt connected TL at d=0.2 λ . The shunt connected TL has l=0.3 λ , $Z_o=50$ Ω , and a load reflection coefficient $\Gamma_L=-0.5$. Determine the input impedance of the line.



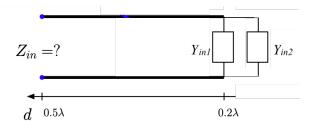
Step 1: Black TL with length l=0.2 λ and $Z_o=50$ Ω , load reflection coefficient $\Gamma_L=0.5$, find input impedance Z_{in1} at l=0.2 λ .



Step 2: Blue TL with length $l = 0.3 \lambda$ and $Z_o = 50 \Omega$, load reflection coefficient $\Gamma_{LS} = -0.5$, find input impedance Z_{in2} at $l = 0.3 \lambda$.



Step 3: Black TL with length $l=0.3 \lambda$ and $Z_o=50 \Omega$, at load side it has parallel impedance Z_{in1} and Z_{in2} , find input impedance Z_{in}



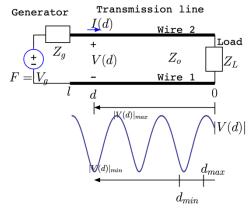
2 Example – From Γ to Z at one location

Example 5: What is the load impedance Z_{Ls} terminating the shunt connected stub in Example 4?

$$Z_{LS} = \frac{1 + \Gamma_{LS}}{1 - \Gamma_{LS}}$$

3 VSWR definition

When the input signal V_g is cosinusoidal signal, we will see standing wave (or galloping wave) on TL line, for an arbitrary load impedance Z_L .



Voltage phasor is
$$V(d) \equiv V^{+}e^{j\beta d} + V^{-}e^{-j\beta d} = V^{+}e^{j\beta d}(1 + \Gamma(d))$$

Where $\Gamma(d)$ is the generalized reflection coefficient.

We see voltage wave form in the left figure, where the voltage will have a maximum magnitude at d_{max} location, and it has a minimum magnitude at d_{min} location.

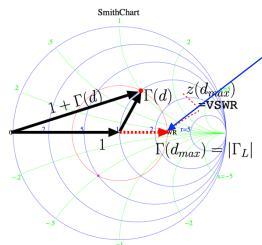
$$|V(d_{max})| = |V^+|(1 + |\Gamma_L|)$$
 and $|V(d_{min})| = |V^+|(1 - |\Gamma_L|)$

We define VSWR (voltage standing wave ratio) as the ratio of the maximum voltage magnitude vs. minimum voltage magnitude.

VSWR
$$\equiv \frac{|V(d_{max})|}{|V(d_{min})|} = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|}$$

VSWR and $|\Gamma_L|$ form a bilinear transform pair $|\Gamma_L| = \frac{\text{VSWR}-1}{\text{VSWR}+1}$

4 VSWR on Smith Chart



Since $\Gamma(d_{max}) = |\Gamma_L|$ (reflection coefficient at d_{max} location is the radius of red circle $|\Gamma_L|$.

$$VSWR = \frac{1 + \Gamma(d_{max})}{1 - \Gamma(d_{max})}$$

Also, from previous lecture we know that normalized impedance z and generalized reflection coefficient Γ also form a bilinear pair, such that

$$z(d_{max}) = \frac{1 + \Gamma(d_{max})}{1 - \Gamma(d_{max})}$$

So we can directly read VSWR on Smith Chart at d_{max} location.

$$VSWR = z(d_{max}) = \Gamma(d_{max})$$

Steps to find VSWR for given TL:

- 1. Calculate normalized impedance z
- 2. Put z on Smith Chart and draw a constant $|\Gamma_L|$ circle
- 3. Read VSWR at $z(d_{max})$ (right half of the horizontal axis)

Consider three special cases:

- Matched load $Z_L = Z_o$, constant $|\Gamma_L|$ circle has a radius of 0, VSWR = 1 (center point)
- Short and open circuit, constant $|\Gamma_L|$ circle has a radius of 1, VSWR = ∞ (Open ckt location)
- Purely reactive load $Z_L = jX_L$, VSWR = ∞ (Open ckt location)