Lecture 36

1 Smith Chart introduction

Download the Smith chart through this <u>link</u>. You can print it in black.

Smith chart is the complex Γ plane. The outer periphery is $\Gamma = 1$ unit circle. The origin is $\Gamma = 0$.

Möbius transformation above translate complex line impedance z = r + jx into the smith chart of Γ values.

• For r = const lines on complex z plane, they transform into smith chart as circles

- o z = 0 (short) \rightarrow left side on center line
- o $z = 1 \text{ (matched)} \rightarrow \text{ origin}$
- $z = \infty$ (open) \rightarrow right side on center line

• For x = const lines on complex z plane, they also transform into smith chart as circles, but we only care about the arcs inside the $\Gamma = 1$ unit circle

- Arcs on upper half plane \rightarrow inductive reactance (x > 0)
- Arcs on lower half plane \rightarrow capacitive reactance (x < 0)

2 Examples using Smith Chart

Please watch the lecture to see the following examples on how to use Smith chart!

2.1 Example – From load impedance Z_L to input impedance Z_{in}

2.2 Example – From Z to Y

3 Example 1: From load to Input impedance and admittance

A load $Z_L = 100 + j50 \Omega$ is connected across a TL with $Z_o = 50 \Omega$ and $l = 0.4 \lambda$. At the generator end, d = l, the line is shunted by an impedance $Z_s = 100 \Omega$. What are the input impedance Z_{in} and admittance Y_{in} of the line, including the shunt connected element.

This example shows 2 ways of using Smith Chart.

- From load impedance Z_L to input impedance Z_{in} Rotate towards generator \rightarrow circle in clockwise direction
- o From impedance Z to admittance Y

Find the opposite position w.r.t. center.

1 Example 2: Average power

Example 2: The TL network described in Example 1 is connected to a generator with open circuit voltage phasor $V_g = 100 \angle 0$ V and internal impedance $Z_g = 25 \Omega$. What is the average power (a) input of the shunted line, (b) delivered to the shunt element, delivered to the load.

a) Average power P_{in} at the input of the shunted line

$$P_{in} = \frac{1}{2} Re\{VI^*\}$$

Need V_{in} by voltage division.

b) Average power P_L of the load Z_L

Because TL is lossless, average power of the input P_{in} = average power of $Z_s + P_L$

2 Example 3: From input to load

Example 3: A TL of length $l=0.3 \lambda$ has an input impedance $Z_{in}=50+j50 \Omega$. Determine the load impedance $Z_L=Z(0)$ and $Y_L=Y(0)$ given that $Z_0=50 \Omega$ for the line.

 \circ From input impedance Z_{in} to load impedance Z_L

Rotate towards load → circle in counterclockwise direction