Lecture 22

1 Poynting theorem example of infinite current sheet

2 Time-averaged power

In the example above, when the field \vec{E} and \vec{H} are cosinusoidal, the Poynting vector \vec{S} = $\vec{E} \times \vec{H} \propto \cos^2(\omega t \mp \beta z)$. It varies from 0 to 1 in time.

Using the trig identity: $\cos^2(\omega t + \phi) = \frac{1}{2}[1 + \cos(2\omega + 2\phi)]$, so time average of < $\cos^2(\omega t + \phi) > = \frac{1}{2}$

Suppose the Poynting vector is $\vec{E} \times \vec{H} = \pm \eta \cos^2(\omega t \mp \beta z) \hat{z} \frac{W}{m^2}$

Then the time average Poynting vector: $\langle \vec{E} \times \vec{H} \rangle = \pm \eta \frac{1}{2} \hat{z} \frac{W}{m^2}$

3 **Phasor Notation**

The solution to wave equations can be expressed as the superposition of various cosinusoidal functions: $\cos(\omega t + \beta z)$, where ω is the angular frequency, and β is the wave number.

Here, $\omega = 2\pi f = 1/T$, T is the time period

Wave number is defined as $\beta = \omega/v$ as the spatial frequency.

Wavelength $\lambda = \frac{2\pi}{8} = vf$

A monochromatic (only has one frequency component) \hat{x} -polarized electric field wave is

$$\vec{E} = E_o \cos(\omega t \mp \beta z) \,\hat{x} \, \frac{V}{m}$$

It can be expressed in phasor form as $\tilde{\vec{E}} = E_o e^{\mp \beta z} \hat{x} \frac{v}{m}$

Remember Euler's identity
$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

Such that
$$Re\left\{\tilde{\vec{E}}e^{j\omega t}\right\} = Re\left\{E_o\cos(\omega t \mp \beta z) + jE_o\sin(\omega t \mp \beta z)\right\} = E_o\cos(\omega t \mp \beta z) = \vec{E}$$

3.1 **Phasor Example**

Field	Phasor
$\mathbf{E} = \cos(\omega t + \beta y)\hat{z}$	$ ilde{\mathbf{E}} = e^{jeta y}~\hat{z}$
	$ ilde{\mathbf{H}} = -rac{e^{jeta y}}{\eta}\hat{x}$
$\mathbf{H} = \sin(\omega t - \beta z)\hat{y}$	$ ilde{\mathbf{H}} = -je^{-jeta z}\hat{y}$
	$\tilde{\mathbf{E}} = -j\eta e^{-j\beta z} \hat{x}$
$\mathbf{E} = \eta \sin(\omega t - \beta z) \hat{x}$	

Obtain $\widetilde{\overline{H}}$ from $\widetilde{\overline{E}}$: $\left|\widetilde{\overline{H}}\right| = \left|\widetilde{\overline{E}}\right| / \eta$, also rotate $\widetilde{\overline{E}}$ direction by 90° such that $\widetilde{\overline{E}} \times \widetilde{\overline{H}}$ points in the propagation direction (using right hand rule).

Obtain $\widetilde{\overline{E}}$ from $\widetilde{\overline{H}}$: $\left|\widetilde{\overline{E}}\right| = \eta \left|\widetilde{\overline{H}}\right|$, also rotate $\widetilde{\overline{H}}$ direction by 90° such that $\widetilde{\overline{E}} \times \widetilde{\overline{H}}$ points in the propagation direction (using right hand rule).

Example of infinite current sheet using phasor form 3.2

For the infinite current sheet example that we have

- c) Calculate the time average dissipated power by $\langle -\vec{J} \cdot \vec{E} \rangle = \frac{1}{2} Re \{ -\tilde{\vec{J}} \cdot \tilde{\vec{E}}^* \}$