Lecture 21

1 The wave equation

In source-free and homogeneous regions, we have the d'Alembert solutions wave equation $\frac{\partial^2 \vec{E}}{\partial z^2} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$ as $\vec{E}, \vec{H} \propto f\left(t \mp \frac{z}{v}\right)$, where the velocity $v = \frac{1}{\sqrt{\mu \epsilon}}$.

These waves are classified as uniform plane - Transverse ElectroMagnetic (TEM) waves.

Since the region is source-free, $\rho = \vec{J} = 0$, so Gauss's law tells us $\nabla \cdot \vec{E} = \nabla \cdot \vec{H} = 0$, \vec{E} and \vec{H} are both divergence free.

TEM wave:

- \vec{E} and \vec{H} vectors are transverse to the direction of propagation, which coincides with the direction of the Poynting vector $\vec{S} = \vec{E} \times \vec{H}$
- \vec{E} and \vec{H} are orthogonal to each other.

d'Alembert wave solutions of 1-D scale wave equation $\frac{\partial^2 E_x}{\partial z^2} = \mu \epsilon \frac{\partial^2 E_x}{\partial t^2}$, which are $\vec{E} = \hat{x} f\left(t \mp \frac{z}{v}\right)$ and $H = \pm \hat{y} \frac{f\left(t \mp \frac{z}{v}\right)}{\eta}$, are called *uniform plane waves*.

2 Example: From E to B

Let $\vec{E} = \hat{x} \Delta \left(\frac{t - \frac{y}{c}}{\tau}\right)$ be a wave solution in free space where $\Delta \left(\frac{t}{\tau}\right)$ is a triangular waveform of duration τ peaking at t = 0 (defined in ECE 210). We will next provide two different solutions demonstrating how the wave field \vec{B} accompanying \vec{E} can be found.

Solution 1: Identify the \vec{E} field to be a *TEM wave*, \vec{E} is transverse to propagation direction y, and has a constant phase plane $t - \frac{y}{c} = const.$

- a) Find the direction of \overrightarrow{H} based on right hand rule
 - Place the fingers of your right hand in the direction of the electric field component.
 - Direct your thumb toward the direction of wave travel (power flow).
 - Rotate your fingers 90° in a direction so that a right-hand screw is formed.
- The new direction of your fingers is the direction of the magnetic field component.
- b) Find the magnitude of $|\vec{H}| = |\vec{H}|/\eta$, Divide the electric field component by the wave impedance to obtain the corresponding magnetic field component.
- c) $\vec{B} = \mu \vec{H}$

Solution 2: General solution, doesn't require it to be a TEM wave.

- a) From Faraday's law, $\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E}$
- b) Calculate \vec{B} by Finding the time-dependent anti derivative of $\frac{\partial \vec{B}}{\partial t}$

3 Example: Plots

Consider an \hat{x} -polarized plane TEM wave field in free space $\vec{E}(z,t) = \hat{x}f\left(t - \frac{z}{c}\right)$, where $f(t) = 2t \, \mathrm{rect}\left(\frac{t}{1us}\right)$, draw the time plot and position plot of \vec{E} field.

4 Infinite current sheet as source

1. DC case

Consider first a static and **constant** surface current density $\vec{J_s} = \hat{x} J_x A/m$ flowing on z = 0 surface, this infinite surface current will produce a static magnetic field $\vec{H}(z) = \mp \hat{y} \frac{J_x}{2} A/m$.

Q: Will it generate a static electric field?

A: No! Because there's no static charge carriers, only currents.

2. AC case

Suppose the current J_x varies with time $\vec{J}_s = \hat{x} J_x(t) A/m$, it will produce a time varying magnetic field of

$$\vec{H}(z,t) = \mp \hat{y} \frac{J_x(t \mp \frac{z}{v})}{2}$$

According to d'Alembert solutions in homogeneous and source free regions.

Since $\vec{H}(z,t)$ is now time-varying, it will also induce an electric field.

$$\vec{E}(z,t) = -\hat{x}\frac{\eta}{2}J_x(t + \frac{z}{v})$$

Notice that magnetic field \vec{H} is pointing in different directions $\mp \hat{y}$, and it has a jump in the z=0 plane, because of the boundary condition $n \times (\vec{H}^+ - \vec{H}^-) = \vec{J}_s$; while electric field \vec{E} is always pointing in $-\hat{x}$ direction, because of the boundary condition $n \times (\vec{E}^+ - \vec{E}^-) = 0$.

Exercise: Check the \vec{E} , \vec{H} , and the propagation direction $\vec{E} \times \vec{H}$ on the upper and lower half space.

5 Poynting theorem

Poynting vector is defined as $\vec{S} = \vec{E} \times \vec{H}$, its magnitude indicates amount of power transported by electromagnetic wave per unit area, and its direction is the wave propagation direction. Its unit is W/m^2 .

Start from the Faraday's law and Ampere's law, $\nabla \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t}$ and $\nabla \times \vec{H} = \vec{J} + \epsilon \frac{\partial \vec{E}}{\partial t}$, dot multiply Faraday's law by \vec{H} , dot multiply Ampere's law by \vec{E} , we get

$$\left(\nabla \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t}\right) \cdot \vec{H}$$
 and $\left(\nabla \times \vec{H} = \vec{J} + \epsilon \frac{\partial \vec{E}}{\partial t}\right) \cdot \vec{E}$

Subtract the 2nd equation from the 1st equation

$$\vec{H} \cdot \nabla \times \vec{E} - \vec{E} \cdot \nabla \times \vec{H} = -\mu \frac{\partial \vec{H}}{\partial t} \cdot \vec{H} - \vec{J} \cdot \vec{E} + \epsilon \frac{\partial \vec{E}}{\partial t} \cdot \vec{E}$$

The left hand is equal to ______ according to vector identity

The right hand can be rearranged into $-\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon \vec{E} \cdot \vec{E} + \frac{1}{2} \mu \vec{H} \cdot \vec{H} \right) - \vec{J} \cdot \vec{E}$

Poynting theorem is a conservation law for electromagnetic energy as

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon \vec{E} \cdot \vec{E} + \frac{1}{2} \mu \vec{H} \cdot \vec{H} \right) + \nabla \cdot \left(\vec{E} \times \vec{H} \right) + \vec{J} \cdot \vec{E} = 0$$

just like continuity equation $\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0$ is the conservation law for electric charge.

- First term $\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon \vec{E} \cdot \vec{E} + \frac{1}{2} \mu \vec{H} \cdot \vec{H} \right)$ is time rate of change of total electric and magnetic energy density.
- Second term $\nabla \cdot (\vec{E} \times \vec{H})$ is energy transport in Poynting theorem.
- Last term $\vec{J} \cdot \vec{E}$ is called Joule heating. It accounts for power absorbed per unit volume.