Lecture 19 ### 1 Maxwell's Equations in free space Maxwell's equations for time-varying electric and magnetic fields: $$\nabla \cdot \vec{D} = \rho$$ Gauss's law $$\nabla \cdot \vec{B} = 0$$ Faraday's law $$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$ Faraday's law $$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$ Ampere's law Where $$\vec{D} = \epsilon_0 \vec{E}$$ and $\vec{B} = \mu_0 \vec{H}$ provided that ρ and \vec{J} describe the distributions of all charges and currents associated with *free* and bound charge carriers. # 2 Boundary condition equations The full set of Maxwell's boundary condition equations concerning any interface with a normal unit vector \hat{n} are $$\hat{n} \cdot (\vec{D}^+ - \vec{D}^-) = \rho_s$$ $$\hat{n} \cdot (\vec{B}^+ - \vec{B}^-) = 0$$ $$\hat{n} \times (\vec{E}^+ - \vec{E}^-) = 0$$ $$\hat{n} \times (\vec{H}^+ - \vec{H}^-) = \vec{J}_s$$ You can remember the boundary condition equations from the full set of Maxwell's Equation, by applying the transformation rules discussed in class. # 3 Maxwell's Equations in material media Maxwell's equations for time-varying electric and magnetic fields: $$\nabla \cdot \vec{D} = \rho$$ Gauss's law $\nabla \cdot \vec{B} = 0$ $$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$ Faraday's law $$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$ Ampere's law Where $$\vec{D} = \epsilon \vec{E}$$ and $\vec{B} = \mu \vec{H}$ provided that ρ and \vec{J} describe the distributions of all charges and currents associated with *free charge carriers* only. #### 3.1 Free and bound charge carriers In material media, the charge density ρ is a combination of the free charge density ρ_f and bound charge density $-\nabla \cdot \vec{P}$: $$\rho = \rho_f - \nabla \cdot \vec{P}$$ Also, the current density \vec{J} is a combination of the free current density \vec{J}_f , the polarization current density $\frac{\partial \vec{P}}{\partial t}$, and the magnetization current density $\nabla \times \vec{M}$: $$\vec{J} = \vec{J}_f + \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$$ ### 3.2 Redefinition of \overrightarrow{D} and \overrightarrow{H} Consider the Gauss's and Ampere's laws in free space $$\nabla \cdot \epsilon_o \vec{E} = \rho$$ and $\nabla \times \mu_o^{-1} \vec{B} = \vec{J} + \frac{\partial \epsilon_o \vec{E}}{\partial t}$ Using the polarization field \vec{P} and the magnetization field \vec{M} , we obtain $$\nabla \cdot \left(\epsilon_o \vec{E} + \vec{P} \right) = \rho_f \quad \text{and} \quad \nabla \times \left(\mu_o^{-1} \vec{B} - \vec{M} \right) = \vec{J}_f + \frac{\partial}{\partial t} \left(\epsilon_o \vec{E} + \vec{P} \right)$$ So we can redefine displacement flux density \vec{D} as $$\vec{D} = \epsilon_o \vec{E} + \vec{P} = \epsilon \vec{E}$$ And magnetic field intensity \vec{H} as $$\vec{H} = \mu_o^{-1} \vec{B} - \vec{M} = \mu^{-1} \vec{B}$$ With these new definitions of \vec{D} and \vec{H} , ρ and \vec{J} are due to free charge carriers only. #### 3.3 Magnetic susceptibility and permeability $$\vec{B} = \mu_o (1 + \chi_m) \vec{H} = \mu \vec{H}$$ where χ_m is a dimensionless parameter called <u>magnetic susceptibility</u>, $\overrightarrow{M} = \chi_m \overrightarrow{H}$; and $\mu = \mu_o(1 + \chi_m)$ is called the <u>permeability</u> of the medium. - For diamagnetic materials, $-1 \ll \chi_m < 0$. These are materials that we ordinarily think of being non-magnetic (copper, water, wood, glass, etc.) - For paramagnetic materials, χ_m slightly larger than 0 (1 $\gg \chi_m > 0$). Paramagnetic materials are very weakly attracted to permanent magnets (aluminum, platinum, liquid oxygen, etc.) - For ferromagnetic materials, χ_m is much larger than 1 ($\chi_m \gg 1$), where it has high magnetic susceptibility χ_m and \vec{B} is non-linear with \vec{H} . Common ferromagnets includes iron, nickel, and cobalt and their alloys.