Lecture 19

1 Maxwell's Equations in free space

Maxwell's equations for time-varying electric and magnetic fields:

$$\nabla \cdot \vec{D} = \rho$$
 Gauss's law
$$\nabla \cdot \vec{B} = 0$$
 Faraday's law
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 Faraday's law
$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$
 Ampere's law

Where

$$\vec{D} = \epsilon_0 \vec{E}$$
 and $\vec{B} = \mu_0 \vec{H}$

provided that ρ and \vec{J} describe the distributions of all charges and currents associated with *free* and bound charge carriers.

2 Boundary condition equations

The full set of Maxwell's boundary condition equations concerning any interface with a normal unit vector \hat{n} are

$$\hat{n} \cdot (\vec{D}^+ - \vec{D}^-) = \rho_s$$

$$\hat{n} \cdot (\vec{B}^+ - \vec{B}^-) = 0$$

$$\hat{n} \times (\vec{E}^+ - \vec{E}^-) = 0$$

$$\hat{n} \times (\vec{H}^+ - \vec{H}^-) = \vec{J}_s$$

You can remember the boundary condition equations from the full set of Maxwell's Equation, by applying the transformation rules discussed in class.

3 Maxwell's Equations in material media

Maxwell's equations for time-varying electric and magnetic fields:

$$\nabla \cdot \vec{D} = \rho$$
 Gauss's law $\nabla \cdot \vec{B} = 0$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 Faraday's law
$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$
 Ampere's law

Where

$$\vec{D} = \epsilon \vec{E}$$
 and $\vec{B} = \mu \vec{H}$

provided that ρ and \vec{J} describe the distributions of all charges and currents associated with *free charge carriers* only.

3.1 Free and bound charge carriers

In material media, the charge density ρ is a combination of the free charge density ρ_f and bound charge density $-\nabla \cdot \vec{P}$:

$$\rho = \rho_f - \nabla \cdot \vec{P}$$

Also, the current density \vec{J} is a combination of the free current density \vec{J}_f , the polarization current density $\frac{\partial \vec{P}}{\partial t}$, and the magnetization current density $\nabla \times \vec{M}$:

$$\vec{J} = \vec{J}_f + \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$$

3.2 Redefinition of \overrightarrow{D} and \overrightarrow{H}

Consider the Gauss's and Ampere's laws in free space

$$\nabla \cdot \epsilon_o \vec{E} = \rho$$
 and $\nabla \times \mu_o^{-1} \vec{B} = \vec{J} + \frac{\partial \epsilon_o \vec{E}}{\partial t}$

Using the polarization field \vec{P} and the magnetization field \vec{M} , we obtain

$$\nabla \cdot \left(\epsilon_o \vec{E} + \vec{P} \right) = \rho_f \quad \text{and} \quad \nabla \times \left(\mu_o^{-1} \vec{B} - \vec{M} \right) = \vec{J}_f + \frac{\partial}{\partial t} \left(\epsilon_o \vec{E} + \vec{P} \right)$$

So we can redefine displacement flux density \vec{D} as

$$\vec{D} = \epsilon_o \vec{E} + \vec{P} = \epsilon \vec{E}$$

And magnetic field intensity \vec{H} as

$$\vec{H} = \mu_o^{-1} \vec{B} - \vec{M} = \mu^{-1} \vec{B}$$

With these new definitions of \vec{D} and \vec{H} , ρ and \vec{J} are due to free charge carriers only.

3.3 Magnetic susceptibility and permeability

$$\vec{B} = \mu_o (1 + \chi_m) \vec{H} = \mu \vec{H}$$

where χ_m is a dimensionless parameter called <u>magnetic susceptibility</u>, $\overrightarrow{M} = \chi_m \overrightarrow{H}$;

and $\mu = \mu_o(1 + \chi_m)$ is called the <u>permeability</u> of the medium.

- For diamagnetic materials, $-1 \ll \chi_m < 0$. These are materials that we ordinarily think of being non-magnetic (copper, water, wood, glass, etc.)
- For paramagnetic materials, χ_m slightly larger than 0 (1 $\gg \chi_m > 0$). Paramagnetic materials are very weakly attracted to permanent magnets (aluminum, platinum, liquid oxygen, etc.)
- For ferromagnetic materials, χ_m is much larger than 1 ($\chi_m \gg 1$), where it has high magnetic susceptibility χ_m and \vec{B} is non-linear with \vec{H} . Common ferromagnets includes iron, nickel, and cobalt and their alloys.