Lecture 18

1 Stored energy in inductors

Inductor L such as the solenoid coil considered above can be used to store energy.

An inductor connected to an external circuit with a quasi-static current I develops a voltage drop $V = L \frac{dI}{dt}$ across its terminals.

Instantaneous power that it absorbed is $P = VI = \frac{d}{dt} \left(\frac{1}{2}LI^2\right)$ [W]

$$P = VI = \frac{d}{dt} \left(\frac{1}{2}LI^2\right) [W]$$

Stored energy

$$W = \frac{1}{2}LI^2 \qquad [J]$$

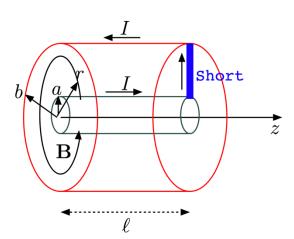
For a long solenoid with inductance $L = N^2 \mu_o A l$, stored energy is $W = \frac{1}{2} L I^2 = \frac{1}{2} \mu_o |H_z|^2 A l$

Stored magnetostatic energy per unit volume is

$$w = \frac{1}{2}\mu_o \vec{H} \cdot \vec{H}$$

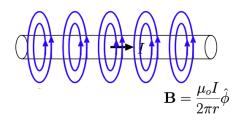
This is similar to electrostatic energy per unit volume

2 Inductance of shorted coax



Consider a coaxial cable of some length *l* which is "shorted" at one end, and a steady current I can flow on the inner conductor of radius a to return on the interior surface of the outer conductor at radius b after having circulated through the short.

a) Calculate magnetic field \vec{B} in between the conductors



Consider the inner conductor with current I, use Ampere's

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_o I$$

 $\mathbf{B} = \frac{\mu_o I}{2\pi r} \hat{\phi}$ We get the magnetic field in $\hat{\phi}$ direction

$$\vec{B} = \frac{\mu_o I}{2\pi r} \hat{\phi}$$

b) Calculate magnetic flux

$$\Psi = \int_{S} \vec{B} \cdot d\vec{S} = \underline{\hspace{1cm}}$$

Note that \vec{B} is position dependence $\left(\vec{B} \propto \frac{1}{r}\right)$

c) Find inductance L

$$L = \frac{\Psi}{I} = \underline{\hspace{1cm}}$$

Discussion

1) The inductance of the coax per unit length is

$$\mathcal{L} = \frac{\ln \frac{b}{a}}{2\pi} \mu_o$$

2) The capacitance of the coax per unit length is

$$C = \frac{2\pi}{\ln \frac{b}{a}} \epsilon_o$$

3) The conductance of the coax per unit length is

$$G = \frac{2\pi}{\ln \frac{b}{a}}\sigma$$

In summary,

- Inductance, capacitance, and conductance are associated with μ_0 , ϵ_0 , and σ , respectively.
- The geometric factor (blue part) for the capacitance, and conductance is the same; while the geometric factor for the inductance \mathcal{L} is the inverse of the geometric factor of the capacitance \mathcal{C} . Or, $\mathcal{LC} = \mu_o \epsilon_o$
- 3 Inductance of parallel plates
- 4 Conservation of charge
- 5 Continuity equation
- 6 Ampere's Law and displacement current