## Lecture 15

# 1 Magnetostatics formula

### 1.1 Ampere's Law

Integral form:

$$\oint_C \vec{H} \cdot d\vec{l} = \int_S \vec{J} \cdot d\vec{S}$$

Differential form:

$$\nabla \times \vec{H} = \vec{J}$$

Where  $\vec{B} = \mu_o \vec{H}$ 

### 1.2 Gauss's law for magnetic field

Differential form:

$$\nabla \cdot \vec{B} = 0$$

# 2 Ampere's Law Examples

### 2.1 Infinite current sheet



Consider a uniform surface current density  $J_s = J_s \hat{z} A/m$  flowing on x = 0 plane. The current sheet extends infinitely in y and z directions. Determine  $\vec{B}$  and  $\vec{H}$ .

Similar to the Gaussian pillbox approach for electrostatic problems, this time we will use a rectangular box (dashed line) to calculate circulation integral of  $\vec{B}$ .

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_o I_C$$

Due to the symmetry of the sheet structure, the magnetic field  $\vec{B}$  is pointing in \_\_\_\_ direction for x > 0, and  $\vec{B}$  is pointing in \_\_\_\_ direction for x < 0.

Along rectangular edge 1&3,  $\vec{B}$  and  $d\vec{l}$  is perpendicular, so  $\vec{B} \cdot d\vec{l} = 0$ 

So expand Ampere's law as  $B(x)L + 0 - B(-x)L + 0 = \mu_o J_s L$ 

And we obtain  $\vec{B} = \hat{y} \frac{\mu_0 J_s}{2} sgn(x)$  and  $\vec{H} = \hat{y} \frac{J_s}{2} sgn(x)$ 

The magnitude of Magnetic field on both sides is independent of position.

Case 1:



For a surface current sheet of current density  $J_s$  going to the top, using the right hand rule, magnetic field H is going out of the paper on right side, and going into the paper on left side.

Tangential component of  $\vec{H}$  jumps by the amount of the surface current  $J_s$ .

Case 2:



If we have two surface current sheets of the same amount of current density  $J_s$ , one going to the top, and the other one going to the bottom.

Using superposition,

- The magnetic field  $\overline{H}$  only exist in the interior of the sheets, its magnitude is  $J_s$ . (Again, because tangential component of  $\vec{H}$  jumps by the amount of the surface current  $I_s$ .)
- The magnetic field  $\vec{H}$  at the exterior of the sheets is 0.

#### 2.2 Infinite current slab



Consider a slab of thickness W over  $-\frac{W}{2} < x < \frac{W}{2}$  which extends infinitely in y and z directions and conducts a uniform current density of  $\vec{J} = \hat{z}J_0 A/m^2$ . Determine  $\vec{H}$  if the current density is zero outside the slab.

Similar to previous example, we choose a rectangular path C for the circulation integral

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_o I_C.$$

When path C is inside the slab, it expands to

$$B(x)L + 0 - B(-x)L + 0 =$$
  $\rightarrow$  B inside the slab =

When path C is inside the slab, it expands to

$$B(x)L + 0 - B(-x)L + 0 =$$
  $\rightarrow$  B outside the slab =

### 2.3 Infinite solenoid



An infinite solenoid having N loops per unit length is stacked in z-direction, each loop carrying a current of I A in counter-clockwise direction when viewed from the top. Determine  $\vec{H}$ .

Infinite solenoid has magnetic field only inside the loops, there's no magnetic field outside the loops.

### $B = \mu_o I N$

# 3 Summary of static electric fields and static magnetic fields

- Static electric fields: Curl-free and are governed by  $\nabla \times \vec{E} = 0$ ,  $\nabla \cdot \vec{D} = \rho$  where  $\vec{D} = \varepsilon \vec{E}$  with  $\varepsilon = \varepsilon_T \varepsilon_0$ .
- Static magnetic fields: Divergence-free and are governed by  $\nabla \cdot \vec{B} = 0$ ,  $\nabla \times \vec{H} = \vec{J}$  where  $\vec{B} = \mu \vec{H}$  with  $\mu = \mu_r \mu_0$ ,  $\mu_r$  is the relative permeability.

# 4 Magnetostatic potential

Since magnetostatic field  $\vec{B}$  is divergence-free  $(\nabla \cdot \vec{B} = 0)$ .  $\vec{B}$  field can be written as the curl of a vector  $\vec{A}$ , where

$$\vec{B} = \nabla \times \vec{A}$$

 $\vec{A}$  is called magnetostatic potential or vector potential.

Together with the chosen Coulomb gauge  $\nabla \cdot \vec{A} = 0$ , because of the Helmholtz theorem, (Given their curl and divergences, vector fields can be uniquely reconstructed in regions V of 3D space, see Lect 04), we can solve for a unique  $\vec{A}$ .

Magnetostatic version of Poisson's equation

$$\nabla^2 \vec{A} = -\mu_o \vec{J}$$

General approach to solve for magnetic field in magnetostatics:

Given  $\vec{J}$ , use Poisson's equation  $\nabla^2 \vec{A} = -\mu_o \vec{J}$  to solve for  $\vec{A}$ , then take  $\vec{B} = \nabla \times \vec{A}$  and  $\vec{B} = \mu \vec{H}$  to get  $\vec{B}$  and  $\vec{H}$ .

**General approach** to solve for electric field in electrostatics:

Given  $\rho$ , use Poisson's equation  $\nabla^2 V = -\rho/\varepsilon_0$  to solve for V, then take  $\vec{E} = -\nabla V$  and  $\vec{D} = \varepsilon \vec{E}$  to get  $\vec{E}$  and  $\vec{D}$ .