The Smith Chart

- Superimposes constant Γ, r and x circles
- We can quickly relate normalized line impedance to its corresponding reflection coefficient

$\Gamma(d)$ Transformations

- $\Gamma(d) = \Gamma_L e^{-2\beta d}$
- As d changes, we trace out a circle with radius $|\Gamma(d)| = |\Gamma_L|$
- A full circle is traced every
- $-2\beta d = 2\pi$
- $d = \lambda/2$
- As d increases (towards generator) we move counterclockwise along a constant Γ circle

4

The standing wave ratio is read off of the chart by noting the r value where a constant Γ circle intersects the Γ_r axis

1) SWR = Z_{max}/Z_0 = z_{max} = r_{max} 2) SWR = Z_0/Z_{min} = $1/z_{min}$ = $1/r_{min}$

EXAMPLE:

If the effective reflection coefficient on a piece of 50 Ω line is $\Gamma=0.4+j0.2$, what is the corresponding line impedance at that point ?

 Find Γ on the Smith Chart

EXAMPLE:

If the effective reflection coefficient on a piece of 50 Ω line is $\Gamma=0.4+j0.2$, what is the corresponding line impedance at that point ?

- Find

 ^Γ on the

 Smith Chart
- 2) Read r and x off of chart
- Use Z₀ to renormalize

Z = 50 (2.0 + j1.0)

= 100.0 + j 50.0 Ω

EXAMPLE:

A load with $Z_1 = 50 - j25$ is attached to a lossless, **100** Ω T-L. Find Z(d) at $d = 0.4\lambda$

- 2) Find z on the Smith Chart
- 3) Rotate along constant Γ by 0.4λ
- 4) Read off new values of z

4) Use Z_0 to renormalize

Z(d) = 100 (.95-j0.77) = 95-j77 Ω $Z(d)_{calc} = 95.29 - j77.03$ %error ~ 0.2%

