

November 6th, 2025

Wave Reflection & Transmission

TEM wave incident normally on a boundary

$$\tilde{E}_i(x) = -E_0 e^{-\alpha_1 x} e^{-j\beta_1 x} \hat{y}$$

$$\widetilde{H}_i(x) = -\frac{E_0}{\eta_1} e^{-\alpha_1 x} e^{-j\beta_1 x} \hat{z}$$

$$\sigma_1, \mu_1, \epsilon_1$$
 $x < 0$

$$\sigma_2, \mu_2, \epsilon_2$$
$$x > 0$$

What to enforce?

$$\widetilde{E}_i(x) = -E_0 e^{-\alpha_1 x} e^{-j\beta_1 x} \widehat{y}$$

$$\widetilde{H}_i(x) = -\frac{E_0}{\eta_1} e^{-\alpha_1 x} e^{-j\beta_1 x} \widehat{z}$$

$$\tilde{E}_r(x) = -E_0 \Gamma e^{\alpha_1 x} e^{j\beta_1 x} \hat{y}$$

$$\tilde{H}_r(x) = \frac{E_0}{\eta_1} \Gamma e^{\alpha_1 x} e^{j\beta_1 x} \hat{z}$$

$$\sigma_1, \mu_1, \epsilon_1$$
 $x < 0$

$$\widetilde{E}_t(x) = -E_0 \tau e^{-\alpha_2 x} e^{-j\beta_2 x} \hat{y}$$

$$\widetilde{H}_t(x) = -\frac{E_0}{2\pi} \tau e^{-\alpha_2 x} e^{-j\beta_2 x}$$

$$\widetilde{H}_t(x) = -\frac{E_0}{\eta_2} \tau e^{-\alpha_2 x} e^{-j\beta_2 x} \hat{z}$$

$$\sigma_2, \mu_2, \epsilon_2$$
$$x > 0$$

Coefficients

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$

$$\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$$

Check our work:

1. What if $\eta_1 = \eta_2$?

2. What if $\eta_2 = 0$?

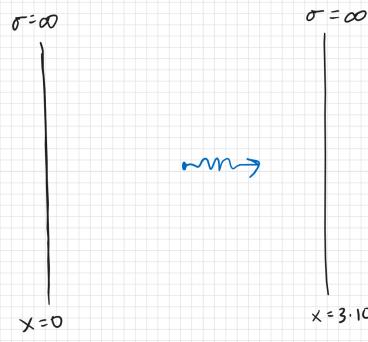
$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

A wave propagates through free space and is normally incident upon a perfect dielectric with $\epsilon=16\epsilon_0$ and $\mu=\mu_0$. What are Γ and τ ?

 $\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$ $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

A single delta wave pops into existence at t=0 halfway between the plates and moves to the right with amplitude 1000. Assume the area between the plates is free space.

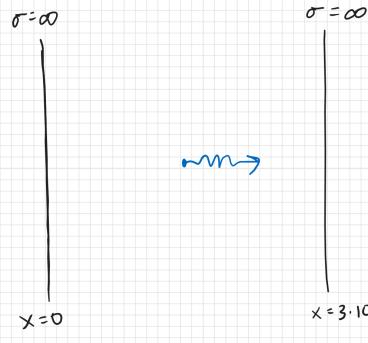
Where is the wave at t = 1s? What will its amplitude be?



$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

A single delta wave pops into existence at t=0 halfway between the plates and moves to the right with amplitude 1000. Assume the area between the plates is free space.

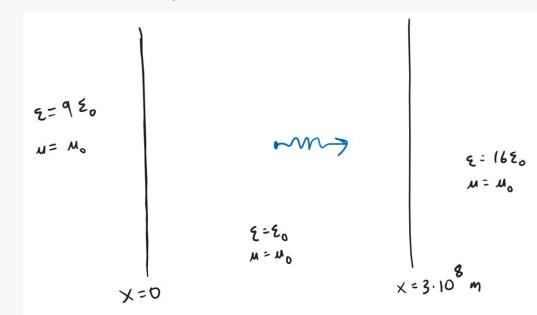
When will the wave be at $x = 2.25 * 10^8 \text{m}$? What will its amplitude be?



$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

A single delta wave pops into existence at t=0 in the middle and moves to the right with amplitude 1000. Assume the area between the plates is free space.

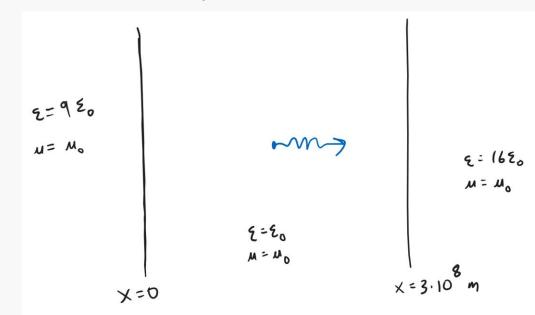
Where is the wave at t = 1s? What will its amplitude be?



$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

A single delta wave pops into existence at t=0 in the middle and moves to the right with amplitude 1000. Assume the area between the plates is free space.

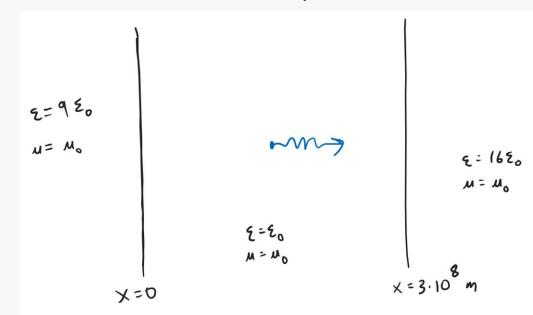
Where is the wave at t = 5.25s? What will its amplitude be?



$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

A single delta wave pops into existence at t=0 in the middle and moves to the right with amplitude 1000. Assume the area between the plates is free space.

When will the wave be at $x = 2.25 * 10^8 \text{m}$? What will its amplitude be?



Standing Waves (dielectric to PEC)

$$\tilde{E}_i(y) = -E_0 e^{-j\beta_1 y} \hat{x}$$

$$\tilde{E}_r(y) = E_0 e^{j\beta_1 y} \hat{x}$$

Problem 1: Standing Waves

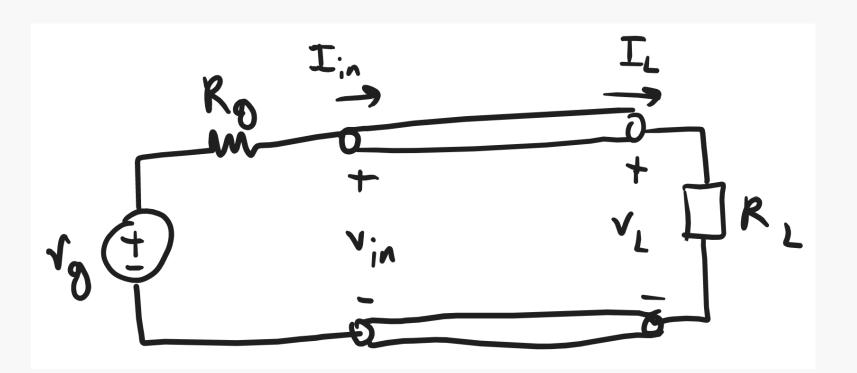
A wave propagates through an imperfect dielectric and is normally incident upon a perfect electrical conductor. Is a standing wave created in the imperfect dielectric?

$$\tilde{E}_i(y) = -E_0 e^{-\alpha_1 y} e^{-j\beta_1 y} \hat{x} \qquad \qquad \tilde{E}_r(y) = -E_0 \Gamma e^{\alpha_1 y} e^{j\beta_1 y} \hat{x}$$

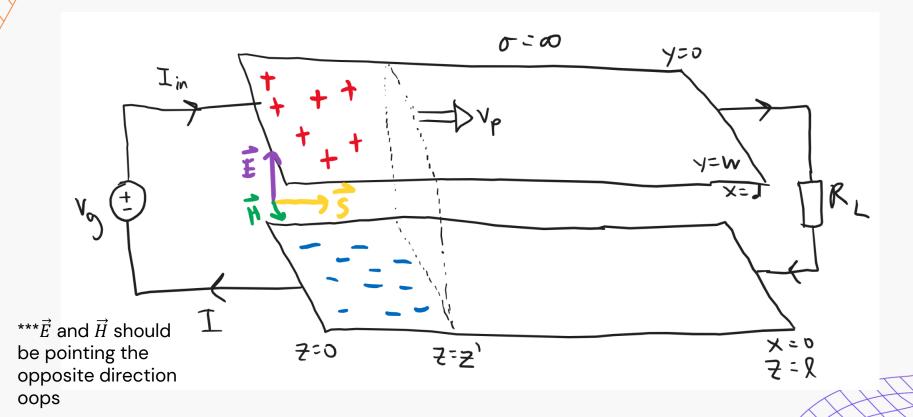
Transmission Lines!

Why do we care?

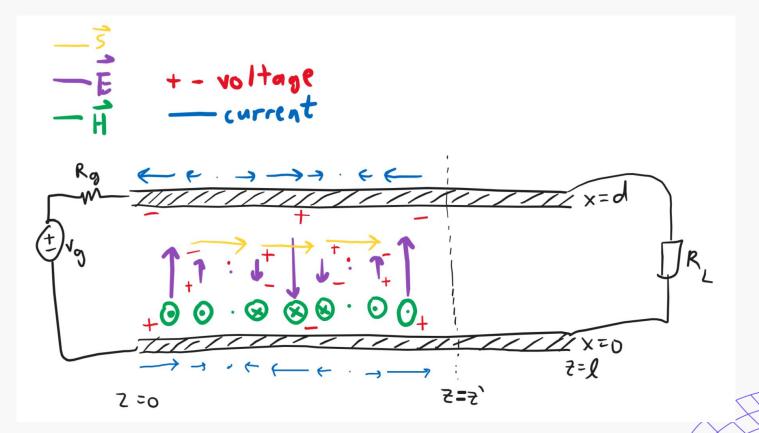
Transmission Line



Transmission Line: Parallel Plate Version



Transmission Line: Parallel Plate Version



+ - voltage In Assette -> current Coax **Version:** 7:0

 $\nabla \cdot \epsilon_0 \vec{E} = \rho_f + \rho_b$

$$\hat{n} \times (\vec{E}_1 - \vec{E}_2) = 0$$

$$\hat{n} \cdot (\vec{P}_1 - \vec{P}_2) = -\rho_{b,s}$$

$$\vec{P} = \epsilon_0 \chi_e \vec{E}$$

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E}$$

$$\vec{J} = \sigma \vec{E}$$

$$\rho_b = -\nabla \cdot \vec{P}$$

$$\vec{E} = -\nabla V$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

$$V_{ab} = V(b) - V(c)$$

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

$$\oiint \vec{D} \cdot d\vec{S} = \iiint \nabla \cdot \vec{D} dV$$

$$\oiint \vec{E} \cdot d\vec{l} = \oiint (\nabla \times \vec{E}) \cdot d\vec{S}$$

$$\int^{b} \nabla V \cdot d\vec{l} = V(b) - V(a)$$

Midterm 2 equations, in one place

$$\vec{B} = \frac{\mu I}{2\pi r} \hat{\phi} \qquad \Psi = \frac{\mu I}{2\pi r} \hat{\phi}$$

 $d\vec{B} = \frac{\mu I d\vec{\ell} \times \hat{r}}{4\pi r^2}$

 $\oint_{C} \vec{B} \cdot d\vec{\ell} = \mu I_{\text{encl}}$

 $\oint_{G} \vec{H} \cdot d\vec{\ell} = \iint_{G} \vec{J} \cdot d\vec{S}$

$$\vec{B} \cdot d\vec{S}$$

 $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

 $\oint \vec{E} \cdot d\vec{l} = \varepsilon$

$$\Psi = \iint_{S} \vec{B} \cdot d\vec{S}$$

$$v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu \epsilon}}$$

$$\rho \qquad \sqrt{\mu \epsilon}$$

$$\cdot d\vec{l} \qquad \omega = 2\pi f = \frac{2\pi}{T}$$

$$-\frac{d}{dt}\iint_{S} \vec{B} \cdot d\vec{S} = \oint_{C} \vec{E} \cdot d\vec{l} \qquad \omega = 2\pi f = 0$$

$$c \stackrel{
ightarrow}{ec E} \cdot d ec l$$

$$\omega = 2\pi f = \sqrt{\mu}$$

$$\frac{\sqrt{\mu}}{\sqrt{\pi}}$$

$$\eta = \frac{\sqrt{\mu}}{\sqrt{\epsilon}}$$

$$\frac{\sqrt{\mu}}{\sqrt{\pi}}$$

$$\sqrt{\mu}$$

$$rac{\sqrt{\mu}}{\sqrt{\epsilon}}$$

$$\beta = \omega \sqrt{\mu \epsilon}$$

$$\nabla^2 \vec{E} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$

$$\frac{2\vec{E}}{t^2}$$

$$\frac{E}{|t^2|}$$

$$\vec{B} = \mu$$

$$\vec{M} = \chi_m \vec{H}$$

$$\vec{B} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$$

Q = CV

 $G = \frac{\sigma}{\epsilon}C$ $R = \frac{1}{G}$

 $\vec{J}_b = \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$

 $\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$

$$f \longleftrightarrow Ae^{-j\beta x}$$

$$A\cos(\omega t - \beta x)\hat{z} \longleftrightarrow Ae^{-j\beta x}$$

$$\begin{pmatrix} \vec{r} \\ 2 \end{pmatrix} = 0$$

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \qquad \varepsilon = \frac{W}{q} = \oint_{C} \frac{\vec{F}}{q} \cdot d\vec{l} \qquad \vec{S} = \vec{E} \times \vec{H} \qquad A\cos(\omega t - \beta x)\hat{z} \leftrightarrow Ae^{-j\beta}$$

$$\nabla \cdot \vec{B} = 0 \qquad \Psi = LI \qquad \tilde{S} = \tilde{E} \times \tilde{H}^{*} \qquad \hat{n} \cdot (\vec{B}_{1} - \vec{B}_{2}) = 0$$

$$\varepsilon = IR \qquad \langle \vec{S} \rangle = \frac{1}{2} \operatorname{Re}\{\tilde{E} \times \tilde{H}^{*}\} \qquad \hat{n} \times (\vec{H}_{1} - \vec{H}_{2}) = \vec{J}_{S}$$

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon \vec{E} \cdot \vec{E} + \frac{1}{2} \mu \vec{H} \cdot \vec{H}\right) + \nabla \cdot \vec{S} + \vec{J} \cdot \vec{E} = 0 \qquad \hat{n} \times (\vec{M}_{1} - \vec{M}_{2}) = \vec{J}_{b.S}$$

Midterm 3 equations, in one place

Condition	β	α	$ \eta $	au	$\lambda = \frac{2\pi}{\beta}$	$\delta = \frac{1}{\alpha}$
$\sigma = 0$	(.) / <u>611</u>	0	$\frac{\mu}{\mu}$	0	2π	∞
$\theta = 0$	$\omega \sqrt{\epsilon \mu}$	U	$\sqrt{\epsilon}$	U	$\omega\sqrt{\epsilon\mu}$	\sim
<u>σ</u> // 1	0.1/1. /611	$g1 \sigma = \sigma / \overline{\mu}$	$\frac{\sqrt{\mu}}{2}$	σ	2π	$\underline{2}$ $\sqrt{\underline{\epsilon}}$
$\overline{\omega\epsilon}$ \left(1)	$\sim \omega \sqrt{\epsilon \mu}$	$ \rho_{\overline{2}\overline{\omega\epsilon}} - \overline{2}\sqrt{\overline{\epsilon}} $	$\sqrt{\epsilon}$	$\frac{1}{2\omega\epsilon}$	$\omega\sqrt{\epsilon\mu}$	$\overline{\sigma} \sqrt{\overline{\mu}}$
$\sigma \sim 1$	$\sigma = \sqrt{\pi f \mu \sigma}$	$\frac{1}{2}$	$/\omega\mu$	150	2π	1
$\frac{\overline{\omega\epsilon}}{\omega\epsilon} \gg 1$	$\sim \sqrt{\pi J} \mu o$	$\sim \sqrt{\pi j \mu o}$	$\sqrt{\sigma}$	40	$\sim \frac{\sqrt{\pi f \mu \sigma}}{\sqrt{\pi f \mu \sigma}}$	$\sim \frac{1}{\sqrt{\pi f \mu \sigma}}$
$\sigma = \infty$	200	20	0		0	0
$\sigma = \infty$	∞	∞	U	_	U	U
	Condition $\sigma = 0$ $\frac{\sigma}{\omega \epsilon} \ll 1$ $\frac{\sigma}{\omega \epsilon} \gg 1$ $\sigma = \infty$	$\sigma = 0 \qquad \omega \sqrt{\epsilon \mu}$ $\frac{\sigma}{\omega \epsilon} \ll 1 \qquad \sim \omega \sqrt{\epsilon \mu}$ $\frac{\sigma}{\omega \epsilon} \gg 1 \qquad \sim \sqrt{\pi f \mu \sigma}$	$\sigma = 0 \qquad \omega \sqrt{\epsilon \mu} \qquad 0$ $\frac{\sigma}{\omega \epsilon} \ll 1 \qquad \sim \omega \sqrt{\epsilon \mu} \qquad \beta \frac{1}{2} \frac{\sigma}{\omega \epsilon} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$ $\frac{\sigma}{\omega \epsilon} \gg 1 \qquad \sim \sqrt{\pi f \mu \sigma} \qquad \sim \sqrt{\pi f \mu \sigma}$	$\sigma = 0 \qquad \omega \sqrt{\epsilon \mu} \qquad 0 \qquad \sqrt{\frac{\mu}{\epsilon}}$ $\frac{\sigma}{\omega \epsilon} \ll 1 \qquad \sim \omega \sqrt{\epsilon \mu} \beta \frac{1}{2} \frac{\sigma}{\omega \epsilon} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} \sim \sqrt{\frac{\mu}{\epsilon}}$ $\frac{\sigma}{\omega \epsilon} \gg 1 \qquad \sim \sqrt{\pi f \mu \sigma} \qquad \sim \sqrt{\pi f \mu \sigma} \qquad \sqrt{\frac{\omega \mu}{\sigma}}$	$\sigma = 0 \qquad \omega \sqrt{\epsilon \mu} \qquad 0 \qquad \sqrt{\frac{\mu}{\epsilon}} \qquad 0$ $\frac{\sigma}{\omega \epsilon} \ll 1 \qquad \sim \omega \sqrt{\epsilon \mu} \qquad \beta \frac{1}{2} \frac{\sigma}{\omega \epsilon} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} \qquad \sim \sqrt{\frac{\mu}{\epsilon}} \qquad \sim \frac{\sigma}{2\omega \epsilon}$ $\frac{\sigma}{\omega \epsilon} \gg 1 \qquad \sim \sqrt{\pi f \mu \sigma} \qquad \sim \sqrt{\pi f \mu \sigma} \qquad \sqrt{\frac{\omega \mu}{\sigma}} \qquad 45^{\circ}$	$\sigma = 0 \qquad \omega \sqrt{\epsilon \mu} \qquad 0 \qquad \sqrt{\frac{\mu}{\epsilon}} \qquad 0 \qquad \frac{2\pi}{\omega \sqrt{\epsilon \mu}}$ $\frac{\sigma}{\omega \epsilon} \ll 1 \qquad \sim \omega \sqrt{\epsilon \mu} \qquad \beta \frac{1}{2} \frac{\sigma}{\omega \epsilon} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} \qquad \sim \sqrt{\frac{\mu}{\epsilon}} \qquad \sim \frac{\sigma}{2\omega \epsilon} \qquad \sim \frac{2\pi}{\omega \sqrt{\epsilon \mu}}$ $\frac{\sigma}{\omega \epsilon} \gg 1 \qquad \sim \sqrt{\pi f \mu \sigma} \qquad \sim \sqrt{\pi f \mu \sigma} \qquad \sqrt{\frac{\omega \mu}{\sigma}} \qquad 45^{\circ} \qquad \sim \frac{2\pi}{\sqrt{\pi f \mu \sigma}}$

 $v = \frac{\omega}{\beta} = \lambda f \qquad \nabla^2 \tilde{E} = (j\omega\mu)(\sigma + j\omega\epsilon)\tilde{E} \qquad \Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} \qquad \tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

$$\omega \epsilon$$
) $ilde{E}$ Γ

$$\frac{1}{\pi f \mu \sigma}$$
 $\sim \frac{1}{\sqrt{\pi f \mu \sigma}}$

$$(i\omega u)(\sigma + i\omega \epsilon)\tilde{E}$$

$$2n_2$$

Units

Charge Q: C

Current I: A

Electric field strength \vec{E} : N/C or V/m

Electric flux density \vec{D} : C/m²

Polarization field \vec{P} : C/m²

Electric potential V: V

Capacitance C: F

Magnetic flux density \vec{B} : T or Wb/m²

Magnetic field strength \vec{H} : A/m

Magnetic flux Ψ: Wb

Electromotive force ε : V

Inductance *L*: H

Electric permittivity ϵ : F/m

Magnetic permeability μ : H/m

Conductivity σ : Si/m

Charge density ρ : C/m³

Surface charge density ρ_s : C/m²

Current density \vec{J} : A/m²

Intrinsic impedance η : Ohm

Wave number β : rad/m