
ECE329: Tutorial Session 2

September 11th, 2025

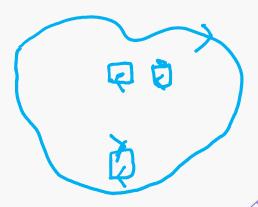
Divergence & Divergence Theorem

Divergence = How much the field is DIVERGING at a certain point.

• Notation: $\nabla \cdot \vec{D}$

• Input: Vector field

• Output: Scalar field


Divergence Theorem: $\oiint \vec{D} \cdot d\vec{S} = \iiint \vec{\nabla} \cdot \vec{D} dV$

Curl & Stoke's Theorem

Curl = How much the field is CURLING around a certain point.

- Notation: $\nabla \times \vec{E}$
- Input: Vector field
- Output: Vector field, with direction indicating how the field right-hand curls around.

Stoke's Theorem: $\oint \vec{E} \cdot d\vec{l} = \iint (\nabla \times \vec{E}) \cdot d\vec{S}$

Gradient & Gradient Theorem

Gradient = How much the scalar function changes (or its GRADE).

- Notation: \(\nabla V \)
- Input: Scalar field
- Output: Vector field, with direction indicating steepest uphill.

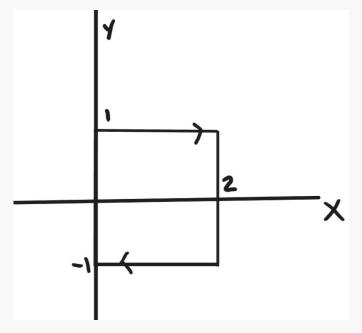
Fundamental theorem of calculus: $\int_a^b f'(t) \cdot dt = f(b) - f(a)$

Similarly:

Gradient theorem: $\int_a^b \nabla V \cdot d\vec{l} = V(b) - V(a)$

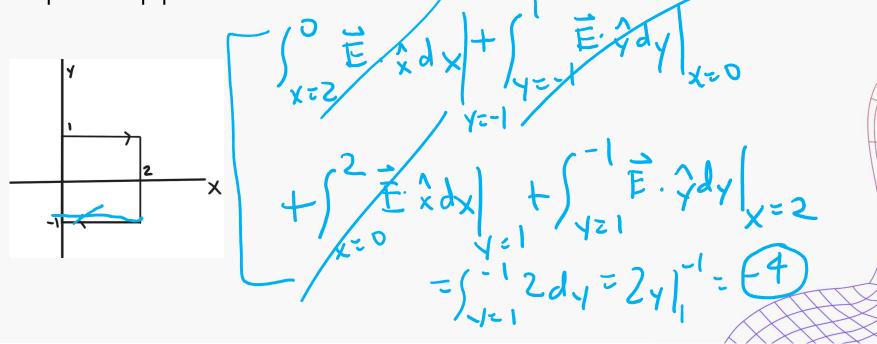
Laplacian

Laplacian (scalar) = How much the scalar function

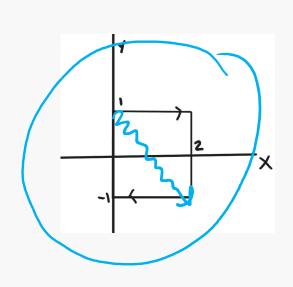

Laplacian (scalar) = How much the rate of change of the scalar function varies (aka stress).

- Notation: $\nabla^2 V = \nabla \cdot \nabla V$
- Input: Scalar field
- Output: Scalar field

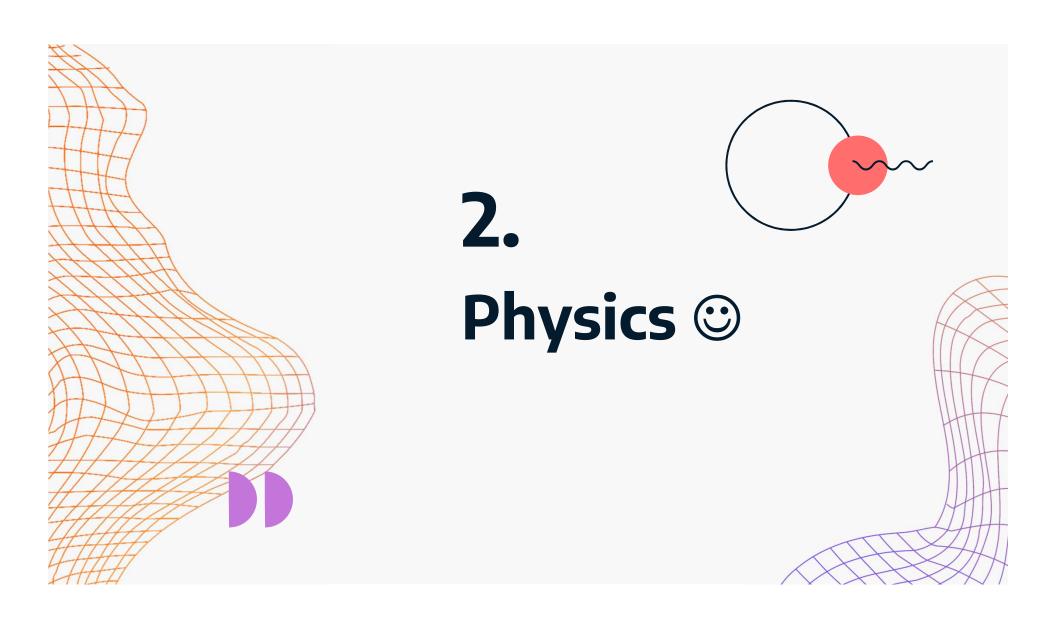
Find the divergence and curl of $\vec{E} = xy\hat{x} + yz\hat{y} + xz\hat{z}$.


Find the gradient and Laplacian of $f = x^2 + y^2 + z^2$.

Suppose $\vec{E} = \frac{x^2}{2}\hat{y} - x\hat{z}$ V/m². What is the circulation for the closed square loop picture below?


Problem 3: Blank slide

Suppose $\vec{E} = \frac{x^2}{2}\hat{y} - x\hat{z}$ V/m². What is the circulation for the closed square loop picture below?



Suppose $\vec{E} = \frac{x^2}{2}\hat{y} - x\hat{z}$ V/m². What is the circulation for the closed

Suppose
$$\vec{E} = \frac{x^2}{2} \hat{y} - x\hat{z}$$
 V/m². What is the circulation for the closed square loop picture below?

 $\vec{x} \times \vec{E} = \vec{y} + x\hat{z} = \vec{y} + x\hat{z}$

Fluxes

Recall electric and current flux equations from last time.

$$\oiint \vec{D} \cdot d\vec{S} = \iiint \rho_{\text{enclosed}} dV \qquad \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial}{\partial t} \iiint \rho_{\text{enclosed}} dV$$

Fluxes

Conservative Fields

The following are equivalent for vector field \vec{E} :

- $\nabla \times \vec{E} = 0$
- \vec{E} is conservative
- $\oint \vec{E} \cdot d\vec{l} = 0$ $\forall Closed loops$ $\int_a^b \vec{E} \cdot d\vec{l}$ is path-independent $\forall A$ $\vec{E} = \nabla V$ for some scalar field V
- E field arises from electrostatics

Electrostatic Potential

Work done by you to move a charge from a to b, causing change in electrostatic potential U:

$$W = U(b) - U(a) = \int_{a}^{b} \vec{F}_{\text{applied}} \cdot d\vec{l}$$
$$= -\int_{a}^{b} \vec{F}_{E} \cdot d\vec{l} = -\int_{a}^{b} q\vec{E} \cdot d\vec{l}$$

Volts = work per unit charge (take q=1). U/q = electrostatic potential energy per unit charge = V = **electrostatic potential**:

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

V to E

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

$$V(b) - V(a) = \int_{a}^{b} \nabla V \cdot d\vec{l} = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

$$\vec{E} = -\nabla V$$

Suppose $\vec{E} = 2(x-1)\hat{x} + 3(z+y^2+1)\hat{y} + 3(y+1)\hat{z}$ V/m². Let the point (0,0,0) be grounded with V=0. Find the voltage difference from the origin to point B at (3,2,0).

$$-\int_{(0,2,0)}^{(0,2,0)} \stackrel{(3,3,0)}{=} \cdot \hat{\lambda} dy - \int_{(0,2,0)}^{(3,3,0)} \stackrel{(3,2,0)}{=} \cdot \hat{\lambda} dy = -\int_{1}^{2} \frac{3}{3} (z+y^{2}+1) dy,$$

$$-\left(\frac{3}{3} \frac{2}{2}(x-1) dx\right)_{x=2}^{(0,2,0)}$$

Problem 5: Blank slide

Suppose $\vec{E} = 2(x-1)\hat{x} + 3(z+y^2+1)\hat{y} + 3(y+1)\hat{z}$ V/m². Let the point (0,0,0) be grounded with V=0. Find the voltage difference from the origin to point B at (3,2,0).

$$-\int \vec{E} J \vec{J} = \int dJ = \int dJ$$

Problem 5: Blank slide

Suppose $\vec{E} = 2(x-1)\hat{x} + 3(z+y^2+1)\hat{y} + 3(y+1)\hat{z}$ V/m². Let the point (0,0,0) be grounded with V=0. Find the voltage difference from the origin to point B at (3,2,0).

$$-\int_{\lambda=0}^{1} \frac{1}{5\pi} (3x+2y) \sqrt{3} dx$$

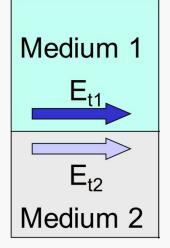
$$-\int_{\lambda=0}^{1} 6(x-1) + 6(x+y^2+1) dx = -17y$$

$$-\int_{\lambda=0}^{1} 6(x-1) + 3x + y = 2x$$

Problem 5: Blank slide

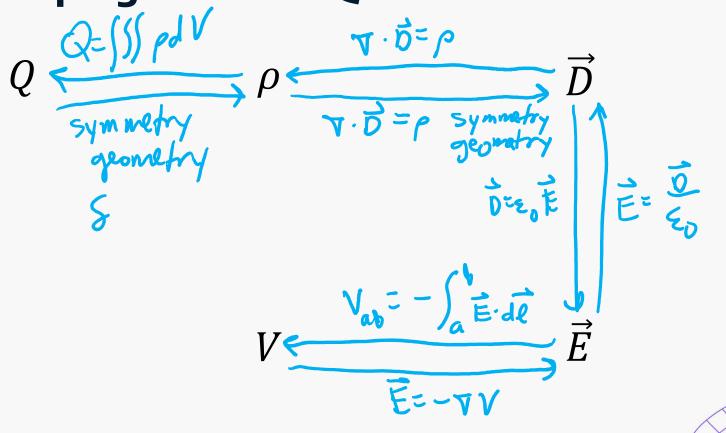
Suppose $\vec{E} = 2(x-1)\hat{x} + 3(z+y^2+1)\hat{y} + 3(y+1)\hat{z}$ V/m². Let the point (0,0,0) be grounded with V=0. Find the voltage difference from the origin to point B at (3,2,0).

$$V(x,y,z) = -(x^2 - 2x + 3zy + y^3 + 3y + 3z) ty$$


$$\int_{3x}^{3y} = -\dot{E}_{x} = 2(x-1)$$

$$\int_{3y}^{3y} = -\dot{E}_{y} = 2(x-1)$$

Boundary Conditions


$$\hat{n} \cdot \left(\vec{D}_1 - \vec{D}_2 \right) = \rho_s$$

$$\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$$

Suppose the yz-plane holds a surface charge density of $\rho_s = 5$ C/m². The electric displacement field on the -x side is given as $\vec{D} = \hat{x} + \hat{y} + \hat{z}$. Find the electric displacement field on the +x side using boundary conditions.

Jumping Between Quantities

P.S.: Helmholtz Theorem

A vector field \vec{E} is specified completely by its divergence and curl.

Week 2 equations, in one place

$$\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r}$$

$$\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B})$$

$$\vec{E} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r}$$

$$\hat{n}\cdot(\vec{D}_1-\vec{D}_2)=\rho_s$$

$$\hat{n} \times (\vec{E}_1 - \vec{E}_2) = 0$$

$$\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r} \qquad \qquad \epsilon_0 \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}}$$

$$\vec{D} = \epsilon_0 \vec{E}$$

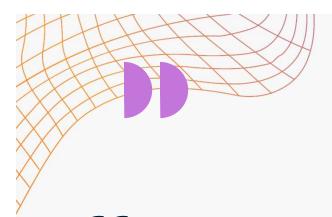
$$\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B}) \qquad \oiint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}}$$

$$\vec{E} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r} \qquad \qquad \oiint \rho dV = Q_{\text{enclosed}}$$

$$\oiint \vec{B} \cdot d\vec{S} = 0$$

$$I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t}$$

$$\widehat{n} \cdot (\overrightarrow{D}_1 - \overrightarrow{D}_2) = \rho_s \qquad I = \oiint \overrightarrow{J} \cdot d\overrightarrow{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t}$$

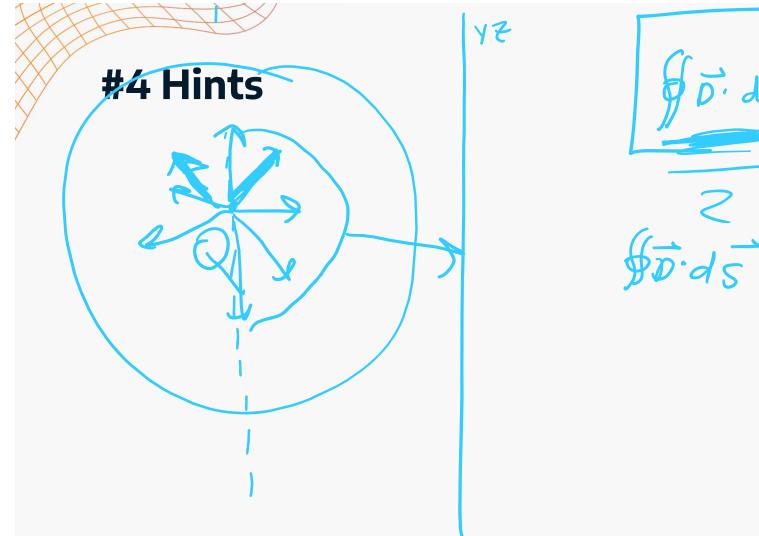

$$\widehat{n} \times (\overrightarrow{E}_1 - \overrightarrow{E}_2) = 0 \qquad \nabla \cdot \overrightarrow{J} = -\frac{\partial \rho}{\partial t}$$

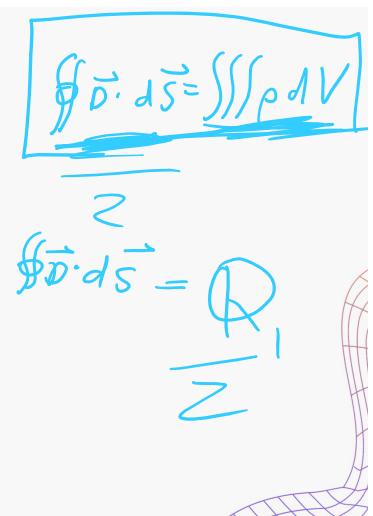
$$\nabla \times \vec{E} = 0$$

$$\vec{E} = -\nabla V$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$




Office Hours

Any questions?

Office Hours

Start Time	Mon	Tue	Wed	Thurs	Fri
9am					
10am					
11am	Prof. Shao 5034 ECEB			TA Office Hour 5034 ECEB	Prof. Chen 5040 ECEB
12pm				TA Office Hour 5034 ECEB	
1pm					
2pm					Prof. Mitchell 3015 ECEB
3pm	TA Office Hour 5034 ECEB		TA Office Hour 5034 ECEB		TA Office Hour 3015 ECEB
4pm	TA Office Hour 5034 ECEB		TA Office Hour 5034 ECEB	TA Office Hour 5034 ECEB	TA Office Hour 3015 ECEB
5pm				TA Office Hour 5034 ECEB Tutorial Session 3017 ECEB	
6pm				Tutorial Session 3017 ECEB	
7pm					

