

9/25/2025

Exam 1 Content

- Vector Calculus
- Coulomb's Law and Lorentz Force
- Gauss's Law & electric flux
- Electrostatic potential
- Boundary Conditions
- Conductors
- Dielectrics
- Capacitance & Conductance
- Charge flux

Coordinate Systems

Cartesian 3D Cylindrical Spherical

Volume Line

Surface

Divergence & Divergence Theorem

Divergence = How much the field is DIVERGING at a certain point.

- Notation: $\nabla \cdot \vec{D}$
- Input: Vector field
- Output: Scalar field

Divergence Theorem: $\oiint \vec{D} \cdot d\vec{S} = \iiint \vec{\nabla} \cdot \vec{D} dV$

Curl & Stoke's Theorem

Curl = How much the field is CURLING around a certain point.

- Notation: $\nabla \times \vec{E}$
- Input: Vector field
- Output: Vector field, with direction indicating how the field right-hand curls around.

Stoke's Theorem: $\oint \vec{E} \cdot d\vec{l} = \iint (\nabla \times \vec{E}) \cdot d\vec{S}$

- 5. (12 pts) For $\mathbf{E} = yz\hat{x} + (y + zx)\hat{y} + xy\hat{z} \text{ V/m}$
 - a) Evaluate the potential difference $V_A V_B$ for $\mathbf{A} = (2, 1, 1)$ and $\mathbf{B} = (1, 4, \frac{1}{2})$

Gradient & Gradient Theorem

Gradient = How much the scalar function changes (or its GRADE).

- Notation: ∇V
- Input: Scalar field
- Output: Vector field, with direction indicating steepest uphill.

Fundamental theorem of calculus: $\int_a^b f'(t) \cdot dt = f(b) - f(a)$

Similarly:

Gradient theorem: $\int_a^b \nabla V \cdot d\vec{l} = V(b) - V(a) = \text{Voltage gain from a to b.}$

Laplacian

Laplacian (scalar) = How much the scalar function LAPLACES.

Laplacian (scalar) = How much the rate of change of the scalar function varies (aka stress).

- Notation: $\nabla^2 V = \nabla \cdot \nabla V$
- Input: Scalar field
- Output: Scalar field

P.S.: Helmholtz Theorem

A vector field \vec{E} is specified completely by its divergence and curl.

All* the concepts

$$-\rho$$

$$ec{E}$$

$$\rightarrow$$

$$ho_b$$

In the beginning...

There exists positive free electric charge and negative free electric charge.

Coulomb's Law:

$$\vec{F} = \frac{q_1 q_2}{4\pi \epsilon r^2} \hat{r}$$

Fields

Electric field [Newtons/Coulomb] OR [Volts/meter]: the effect that a charge has on its surroundings.

$$\vec{F} = \frac{q_1 q_2}{4\pi \epsilon r^2} \hat{r} \qquad \qquad \vec{E} = \frac{q_2}{4\pi \epsilon r^2} \hat{r}$$

$$\vec{F} = q_1 \vec{E}$$

Superposition

$$\vec{F} = q_1 \sum_{n=1}^{\infty} \frac{q_n}{4\pi\epsilon |\vec{r}_n|^2} \frac{\vec{r}_n}{|\vec{r}_n|} \qquad \vec{E} = \sum_{n=1}^{\infty} \frac{q_n}{4\pi\epsilon |\vec{r}_n|^2} \frac{\vec{r}_n}{|\vec{r}_n|}$$

Summation can become an integral!

Electric Field Flux

'Electric field flux', or 'Flux' [N*m²/C] OR [V*m].

$$\vec{E} = \frac{Q}{4\pi\epsilon r^2}\hat{r}$$

$$\iint \vec{E} \cdot d\vec{S}$$

Gauss's Law: Electric

For closed surfaces only:

- If there is more electric field flux,
- · Then there is more electric field flowing out of the surface,
- Then, more free charge must be enclosed in the surface.

This is Gauss's Law!

$$\epsilon \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}}$$

- 2. Two parts of the following question are independent:
 - a) Consider an infinite slab of width W=2 m occupying the region |x|<1 m. The charge density within the slab is $\rho=4$ C/m³ and it is zero outside the slab.
 - i. (4 pts) Determine the electric field vector $\mathbf{E}(x,0,0)$ for x=2 m and x=-2 m.

summer20

- ii. (4 pts) Determine the electric field vector $\mathbf{E}(x,0,0)$ for -1 < x < 1 m within the slab.
 - $\mathbf{E}(x,0,0)$ for -1 < x < 1 in within the s

All* the concepts

Gauss's Law: Magnetic

There do not exist positive magnetic charges or negative magnetic charges!

$$\epsilon \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}}$$

$$\oiint \vec{B} \cdot d\vec{S} = 0$$

Displacement Field

$$\epsilon \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}}$$

Recall vector field $\vec{D} = \epsilon \vec{E}$.

Electric displacement field: \vec{D} [C/m²]

Electric displacement flux: Closed surface integral of vector field \vec{D} .

$$\oiint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}}$$

Charge Density

Charge density: ρ [C/m³]

$$\epsilon \oiint \vec{E} \cdot d\vec{S} = \oiint \vec{D} \cdot d\vec{S} = \iiint \rho dV = Q_{\text{enclosed}}$$

All* the concepts

Gauss's Law: Differential form

$$\oiint \vec{D} \cdot d\vec{S} = \iiint \rho_{\text{enclosed}} dV \qquad \oiint \vec{B} \cdot d\vec{S} = 0$$

All* the concepts

P fields: The intuition

P fields: The math

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$$
: The defining equation.

Assumption: Dielectric is 'isotropic', so \vec{P} is collinear to \vec{E} . Then:

- $\vec{P} = \epsilon_0 \chi_e \vec{E}$ with **electric susceptibility** $\chi_e \ge 0$ nearly always in this class.
- Let electric permittivity be $\epsilon = \epsilon_0 (1 + \chi_e)$.
- Let relative electric permittivity be $\epsilon_r = 1 + \chi_e$
- $\vec{D} = \epsilon \vec{E}$

P fields: The math

Divergences:

- Gauss's Law: $\nabla \cdot \epsilon_0 \vec{E} = \rho_f + \rho_b$
- Gauss's Law: $\nabla \cdot \vec{D} = \rho_f = \rho$

• Therefore, $\rho_b = -\nabla \cdot \vec{P}$

All* the concepts

Conservative Fields

The following are equivalent for vector field \vec{E} :

- $\nabla \times \vec{E} = 0$
- \vec{E} is conservative
- $\oint \vec{E} \cdot d\vec{l} = 0$
- $\int_a^b \vec{E} \cdot d\vec{l}$ is path-independent
- $\vec{E} = \nabla V$ for some scalar field V
- \vec{E} field arises from electrostatics

- a) Consider the electric field $\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2$, where $\mathbf{E}_1 = \hat{x}\sin(\pi x/2) \text{ V/m}$ and $\mathbf{E}_2 = \hat{x}\sin(\pi y/2)$ V/m.
 - i. (4 pts) Which one of E_1 and E_2 satisfies the electrostatic field conditions? Explain.

Electrostatic Potential

Work done by the electric field to move a charge from a to b, causing drop in electrostatic potential energy U:

$$-\Delta U = -[U(b) - U(a)] = \int_a^b q\vec{E} \cdot d\vec{l}$$

Volts = work per unit charge (take q=1). U/q = electrostatic potential energy per unit charge = V = electrostatic potential:

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

Example

2. (25 points) Considering elelctric field E in free space and path C indicated in figure below, answer the following questions:

- a) If the electric field is $\mathbf{E} = 2\hat{x} 3\hat{y} + 5\hat{z} \text{ V/m}$, i. (7 pts) what is the circulation $\oint \mathbf{E} \cdot d\mathbf{l}$ around path C? Show your work.
 - ii. (7 pts) what is the electrostatic potential drop from point a to b (i.e. V(a) V(b))?

Spring 18

E to V

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

All* the concepts

Poisson's Equation

Laplace's Equation

All* the concepts

Boundary Conditions

$$\hat{n} \cdot (\vec{D}_1 - \vec{D}_2) = \rho_s \quad \hat{n} \cdot (\vec{P}_1 - \vec{P}_2) = -\rho_{b,s} \quad \hat{n} \times (\vec{E}_1 - \vec{E}_2) = 0$$

All* the concepts

6. Two dielectric media with permittivities $\epsilon_1=\epsilon_0$ and $\epsilon_2=4\epsilon_0$ are separated by a charge free boundary.

The electric field in medium 1 has magnitude of 10 $\frac{V}{m}$ at an angle 30 degrees from the normal.

- a) Find the magnitude and direction of the electric field in medium 2.
- b) Suppose the electric field in medium 1 is the same, but the electric field in medium 2 is now $10\frac{V}{m}$. Find the surface charge on the boundary.
- c) Suppose the boundary is charge-free and medium 2 is now a slab of finite thickness with medium 3 ($\epsilon_3 = \epsilon_0$) on the other side. What is the angle from normal of the electric field in medium 3?

HW3

Capacitance

Capacitance: the ability of something to collect and store energy in the form of electrical charge.

This energy is stored as opposite electric charges being held apart (and thus creating a difference in electric potential, aka a voltage drop).

$$Q = CV \qquad G = \frac{\sigma}{\epsilon}C \qquad R = \frac{1}{G}$$

- 3. Two parts of the following question are independent:
 - a) (15 pts) Consider the following *spherically* symmetric configuration of composite materials in steady-state equilibrium:
 - i. The region defined by $r \le 1$ m, where $r = \sqrt{x^2 + y^2 + z^2}$ is the radial distance from the center of the spherical configuration, has $\epsilon = \epsilon_o$, $\sigma = 10^6$ S/m, and holds a net charge of Q = +4 C distributed uniformly over its spherical surface.
 - ii. A perfect dielectric shell with $\epsilon = 2\epsilon_0$ occupies the region 1 < r < 2 m.
 - iii. Region $2 \le r \le 3$ m has the same material properties as region $r \le 1$ m and holds zero net charge.
 - iv. Region r > 3 m is occupied by free space. In all four regions we have $\mu = \mu_o$.

Determine, in all four regions, (a) \mathbf{D} , (b) \mathbf{E} and (c) \mathbf{P} , and (d) the surface charge densities, in C/m^2 units, at each of the three material boundaries at r=1, 2, and 3 m. Hint: Make use of Gauss's law in integral form, $\oint_S \mathbf{D} \cdot dS = \int_V \rho dV$, with $\mathbf{D} = \epsilon \mathbf{E} = \epsilon_o \mathbf{E} + \mathbf{P}$, and a crucial fact about steady-state fields within conducting materials.

Summer 18

P.S.: Maxwell's Equations

Maxwell collected these equations. Don't worry about where it came from.

$$\nabla \cdot \vec{D} = \rho$$

Gauss's Law (electric)

$$\nabla \cdot \vec{B} = 0$$

Gauss's Law (magnetic)

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Faraday's Law

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

Ampere's Law (with Maxwell's correction)

P.S.: Lorentz Force

Currents create magnetic fields for some reason. Magnetic fields also exert force on moving charges for some reason.

So, here's an equation to describe that.

Lorentz Force equation

$$\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B})$$

P.S. Current Density

Current: movement of charge, denoted I [Amps] = [Coulomb/second].

Charge flux: movement of charge through a surface.

Current density: Denoted \vec{J} [Amps/meter²]. Integrating current density over a surface yields charge flux!

$$\epsilon_0 \oiint \vec{E} \cdot d\vec{S} = Q_{\rm enclosed} \qquad \qquad I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\rm enclosed}}{\partial t}$$

P.S. Current Flux

$$\oiint \vec{D} \cdot d\vec{S} = \iiint \rho dV$$

$$\oiint \vec{J} \cdot d\vec{S} = -\frac{\partial}{\partial t} \iiint \rho dV$$

P.S. Conductors: The intuition

P.S. Conductors: The math

Described by σ , aka conductivity (units: Siemens/meter)

What to know:

• $\vec{J} = \sigma \vec{E}$ (Ohm's Law)

Assumption: We are dealing with electrostatics, i.e. steady-state.

• If $\sigma \neq 0$, material has zero internal fields and finite surface charge densities.

Exam 1 Prep

- Make your own 4"x6" notecard. Do not blindly copy other people's notecards. Make sure you understand what you are writing on your notecard.
- Review HWs 1–4.
- Do the tutorial problems and review the solutions. These also contain rubrics, which will be similar to how your exam will be graded.
- Do the practice exams on course website.
- Read over Professor Kudeki's notes if you have time. They are a bit dense.

Exam 1 equations, in one place

Kam 1 equations, in one place
$$\epsilon \oiint \vec{E} \cdot d\vec{S} = Q_{\sf enclosed}$$

$$\epsilon \oiint \vec{E} \cdot d\vec{S} = Q_{ ext{enclosed}}$$
 $f \ni \vec{D} \cdot d\vec{S} = Q_{ ext{enclosed}}$
 $f \ni \vec{D} \cdot d\vec{S} = Q_{ ext{enclosed}}$
 $f \ni \vec{R} \cdot d\vec{S} = Q_{ ext{enclosed}}$

$$p_1(\vec{v}_1 \times \vec{B})$$
 $\implies D \cdot dS = Q_{\text{enclosed}}$ $\implies \rho dV = Q_{\text{enclosed}}$ $\implies \vec{B} \cdot d\vec{S} = 0$ $\implies \vec{B} \cdot d\vec{S} = 0$ $\implies \vec{B} \cdot d\vec{S} = 0$

$$(\vec{v}_1 imes \vec{B})$$
 $\iiint
ho dV = Q_{ ext{enclosed}}$ $\iint
ho dV = Q_{ ext{enclosed}}$ $\vec{B} \cdot d\vec{S} = 0$ $I = \oiint \vec{I} \cdot d\vec{S} = -\frac{\partial Q_{ ext{enclosed}}}{\partial \vec{B}}$

$$\begin{aligned}
q_1 E + q_1(\nu_1 \times B) & \text{if } \rho av = Q_{\text{enclosed}} \\
&= \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r} & \text{for } \vec{B} \cdot d\vec{S} = 0 \\
I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclosed}}}{\partial t}
\end{aligned}$$

$$\vec{E} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r} \qquad \qquad \oiint \vec{B} \cdot d\vec{S} = 0$$

$$I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{enclo}}}{\partial t}$$

$$I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\text{en}}}{\partial \vec{\sigma}}$$
 $\hat{n} \cdot (\vec{D}_1 - \vec{D}_2) = \rho_s$
 $\hat{n} \times (\vec{E}_1 - \vec{E}_2) = 0$
 $\epsilon = \epsilon_0 (1 + \chi_e)$

Q = CV

 $G = \frac{\sigma}{\epsilon}C$ $R = \frac{1}{G}$

$$ho_{s}$$

$$0 \qquad \qquad \epsilon = \epsilon_{0}(1 + \chi_{e})$$
 $ec{P} = \epsilon_{0}\chi_{e}ec{E}$

$$\vec{P} = \epsilon_0 \chi_e \vec{E}$$

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon_0 \vec{E}$$

 $\nabla \cdot \epsilon_0 \vec{E} = \rho_f + \rho_b$

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E}$$

$$\vec{J} = \sigma \vec{E}$$

$$\rho_b = -\nabla \cdot \vec{P}$$

$$\hat{n} \times (\vec{E}_1 - \vec{E}_2) = \rho_s$$

$$\hat{n} \times (\vec{E}_1 - \vec{E}_2) = 0$$

$$\hat{r} \cdot (\vec{P}_1 - \vec{P}_2) = -\rho_{b,s}$$

$$\hat{r} = \epsilon_0 \chi_e \vec{E}$$

$$\vec{r} = \epsilon_0 \chi_e \vec{E}$$

$$\vec{r} = \epsilon_0 \chi_e \vec{E}$$

$$\vec{r} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E}$$

$$\nabla \cdot \vec{D} = \rho$$

$$\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$$

$$\vec{F} = \frac{q_1 q_2}{4\pi \epsilon_0 r^2} \hat{r}$$

$$\vec{F} = q_1 \vec{E} + q_1 (\vec{v}_1 \times \vec{B})$$

$$\vec{E} = \frac{q_2}{4\pi \epsilon_0 r^2} \hat{r}$$

$$\epsilon \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}}$$

$$f \rightarrow d\vec{S} = Q_{\text{enclosed}}$$

$$f \rightarrow d\vec{S} = Q_{\text{enclosed}}$$

$$f \rightarrow d\vec{S} = Q_{\text{enclosed}}$$

 $-\nabla^2 V = \frac{\rho}{}$

 $\nabla \cdot \vec{B} = 0$

$$\oint \vec{E} \cdot d\vec{l} = \iint (\nabla \times \vec{E}) \cdot d\vec{S}$$

$$\oint_{a} \vec{E} \cdot d\vec{l} = \iint_{a} (\nabla \times \vec{E}) \cdot d\vec{S}$$

 $\nabla \times \vec{E} = 0$

 $\vec{E} = -\nabla V$

 $\oint \vec{E} \cdot d\vec{l} = 0$

$$\int_{a}^{b} \nabla V \cdot d\vec{l} = V(b) - V(a)$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{E} = -\frac{\partial B}{\partial t}$$

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

Units

Charge Q: C

Electric field \vec{E} : N/C or V/m

Displacement field \vec{D} : C/m²

Polarization field \vec{P} : C/m²

Electric potential V: V

Capacitance C: F

Magnetic field \vec{B} : T or Wb/m²

Charge density ρ : C/m³

Surface charge density ρ_s : C/m²

Current density \vec{J} : A/m²

Electric permittivity ϵ : F/m Magnetic permeability μ : H/m Conductivity σ : Si/m

Good Luck!

Any questions?

