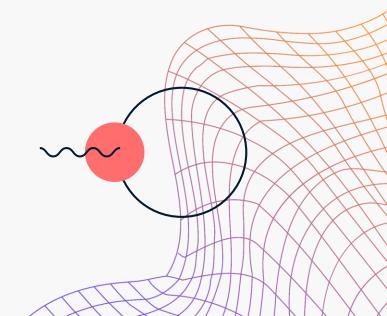
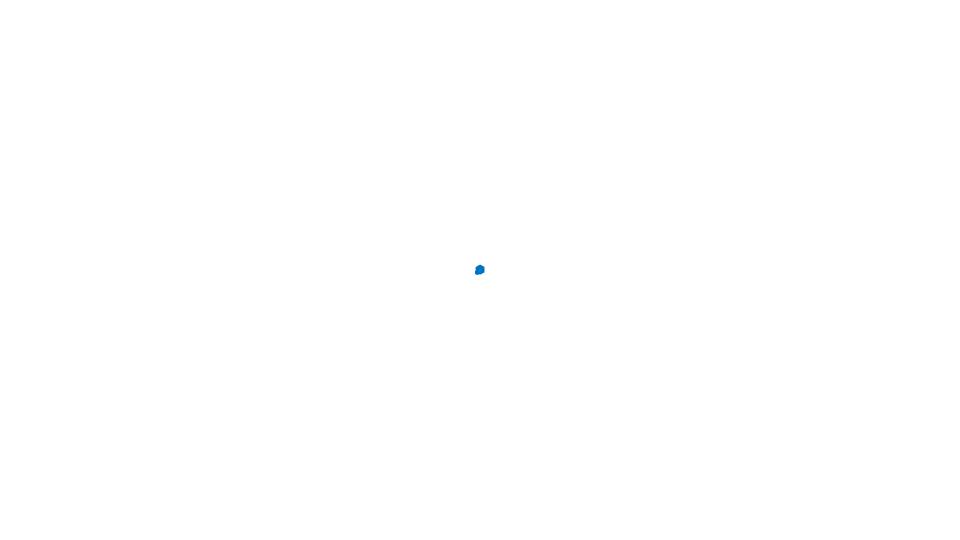


April 16th, 2025





Exam 3 Content

- Poynting Theorem
- Phasors
- TEM Wave Propagation in Material Media
- Polarization
- Standing Waves
- Bounce Diagrams & TLs

Poynting Vector & Theorem

 $\vec{S} = \vec{E} \times \vec{H}$. Units: W/m². "Instantaneous" power per unit area passing through surface in direction of \vec{S}

Energy unit volume balance equation:

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \epsilon \vec{E} \cdot \vec{E} + \frac{1}{2} \mu \vec{H} \cdot \vec{H} \right) + \nabla \cdot \vec{S} + \vec{J} \cdot \vec{E} = 0$$

Phasor Notation

$$\vec{E}(x,t) = A\cos(\omega t - \beta x)\hat{z} = \text{Re}\{Ae^{j\omega t}e^{-j\beta x}\hat{z}\} \longleftrightarrow Ae^{-j\beta x}\hat{z} = \tilde{E}(x)$$

Time domain

Phasor

$$\sin(x) = \cos\left(x - \frac{\pi}{2}\right)$$

Time-Averaging

If TEM wave \vec{E} is cosinusoidal,

- Then corresponding \vec{H} is cosinusoidal
- Then phasors \widetilde{E} and \widetilde{H} exist
- Also, $\vec{S} = \vec{E} \times \vec{H}$ (instantaneous power per unit area) is cosinusoidal squared
- We can write \vec{S} in phasor form too: $\tilde{S} = \tilde{E} \times \tilde{H}^*$
- Time-average of cosinusoidal squared is ½ of the magnitude of the cosinusoidal:

$$\langle \vec{S} \rangle = \frac{1}{2} \operatorname{Re} \{ \tilde{E} \times \tilde{H}^* \}$$

Wave Equation in Material Media

Assumptions: $\rho = 0$, $\vec{J} = 0$, i.e. region is a source-free. $\sigma \neq 0$ now!

Wave equation: $\nabla^2 \tilde{E} = (j\omega\mu)(\sigma + j\omega\epsilon)\tilde{E}$. Solutions are TEM waves. \vec{E} and \vec{H} point **perpendicular** to the direction of travel.

General form of cosinusoidal solution:

Getting H from E

$$\vec{E} = Ae^{\alpha y}\cos(\omega t + \beta y + \phi)\,\hat{x}\,[\text{V/m}]$$

$$\vec{E} = Ae^{\alpha y}e^{j\beta y}e^{j\phi}\hat{x} \text{ [V/m]}$$

Getting E from H

$$\vec{H} = Ae^{\alpha y}\cos(\omega t + \beta y + \phi)\hat{x}$$
 [A/m]

$$\vec{H} = Ae^{\alpha y}e^{j\beta y}e^{j\phi}\hat{x} \text{ [A/m]}$$

EXACT Formulae

$$\gamma = \sqrt{(j\omega\mu)(\sigma + j\omega\epsilon)}$$

$$\gamma \eta = j\omega \mu$$

$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\epsilon}}$$

$$\frac{\gamma}{\eta} = \sigma + j\omega\epsilon$$

APPROXIMATE Formulae

	Condition	β	α	$ \eta $	au	$\lambda = \frac{2\pi}{\beta}$	$\delta = \frac{1}{\alpha}$
Perfect	$\sigma = 0$	$\omega\sqrt{\epsilon\mu}$	0	$\sqrt{\mu}$	0	$\frac{2\pi}{\omega\sqrt{\epsilon\mu}}$	∞
dielectric		V 3/2		V ε		$\omega\sqrt{\epsilon\mu}$	
Imperfect	$\frac{\sigma}{\omega\epsilon} \ll 1$	$\sim \omega \sqrt{\epsilon \mu}$	$\beta \frac{1}{2} \frac{\sigma}{\omega \epsilon} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$	$\sim \sqrt{rac{\mu}{\epsilon}}$	$\sim \frac{\sigma}{2\omega\epsilon}$	$\sim \frac{2\pi}{\omega\sqrt{\epsilon\mu}}$	$\frac{2}{\sigma}\sqrt{\frac{\epsilon}{\mu}}$
dielectric							
Good	$\frac{\sigma}{\omega\epsilon} \gg 1$	$\sim \sqrt{\pi f \mu \sigma}$	$\sim \sqrt{\pi f \mu \sigma}$	$\sqrt{\frac{\omega\mu}{\sigma}}$	45°	$\sim \frac{2\pi}{\sqrt{\pi f \mu \sigma}}$	$\sim rac{1}{\sqrt{\pi f \mu \sigma}}$
conductor							
Perfect	$\sigma = \infty$	∞	∞	0	-	0	0
conductor							

Wave Polarization

Polarization is how the tip of \vec{E} varies over time.

Linear: In phase

Circular: 90 degrees out-of-phase with equal magnitude

- Right-Handed
- Left-Handed

Elliptical: Anything else

Wave Polarization

Example of linear polarization: $\vec{E} = 3\cos(\omega t - \beta z)\hat{x}$

Example of right-handed circular polarization (RHCP):

$$\vec{E} = 3\cos(\omega t - \beta z)\hat{x} + 3\cos(\omega t - \beta z - \frac{\pi}{2})\hat{y}$$

Example of left-handed circular polarization (LHCP):

$$\vec{E} = 3\cos(\omega t - \beta z)\hat{x} - 3\cos(\omega t - \beta z - \frac{\pi}{2})\hat{y}$$

Wave Polarization

Example of elliptical polarization:

$$\vec{E} = 3\cos(\omega t - \beta z)\hat{x} + \cos\left(\omega t - \beta z - \frac{\pi}{2}\right)\hat{y}$$

Example of elliptical polarization:

$$\vec{E} = 3\cos(\omega t - \beta z)\hat{x} + 3\cos(\omega t - \beta z - \frac{\pi}{3})\hat{y}$$

What about this?

$$\vec{E} = 2\cos(\omega t - \beta z)\hat{x} + 4\cos(\omega t - \beta z)\hat{y}$$

Wave Polarization Example

Find the polarization of:

$$\vec{E} = 3\cos(\omega t + \beta x)\hat{z} - 3\cos(\omega t + \beta x - \frac{\pi}{2})\hat{y}$$

Wave Polarization Example

Find the polarization of:

$$\vec{E} = 3\cos(\omega t + \beta x)\hat{z} - 3\cos(\omega t + \beta x + \frac{\pi}{2})\hat{y}$$

Wave Reflection & Transmission

TEM wave incident normally on a boundary

$$\widetilde{E}_i(x) = E_0 e^{-\alpha_1 x} e^{-j\beta_1 x} \widehat{y}$$

$$\widetilde{H}_i(x) = \frac{E_0}{\eta_1} e^{-\alpha_1 x} e^{-j\beta_1 x} \widehat{z}$$

$$\sigma_1, \mu_1, \epsilon_1$$
 $x < 0$

$$\sigma_2, \mu_2, \epsilon_2$$
 $x > 0$

Reflection & Transmission Coefficients

$$\tilde{E}_i(x) = E_0 e^{-\alpha_1 x} e^{-j\beta_1 x} \hat{y}$$

$$\tilde{E}_0 = x \hat{i} e^{-x} \hat{x}$$

$$\widetilde{H}_i(x) = \frac{E_0}{\eta_1} e^{-\alpha_1 x} e^{-j\beta_1 x} \hat{z}$$

$$\tilde{E}_r(x) =$$

$$\widetilde{H}_r(x) =$$

$$\kappa = 0$$

$$\tilde{E}_t(x) =$$

$$\widetilde{H}_t(x) =$$

$$\sigma_1, \mu_1, \epsilon_1 \\ x < 0$$

$$\sigma_2, \mu_2, \epsilon_2$$
$$x > 0$$

Summary

$$\widetilde{E}_i(x) = E_0 e^{-\alpha_1 x} e^{-j\beta_1 x} \widehat{y}$$

$$\widetilde{H}_i(x) = \frac{E_0}{\eta_1} e^{-\alpha_1 x} e^{-j\beta_1 x} \widehat{z}$$

$$\tilde{E}_r(x) = E_0 \Gamma e^{\alpha_1 x} e^{j\beta_1 x} \hat{y}$$

$$\widetilde{H}_r(x) = -\frac{E_0}{\eta_1} \Gamma e^{\alpha_1 x} e^{j\beta_1 x} \hat{z}$$

 $\sigma_1, \mu_1, \epsilon_1$

x < 0

$$\sigma_2, \mu_2, \epsilon_2$$

$$x > 0$$

 $\tilde{E}_t(x) = E_0 \tau e^{-\alpha_2 x} e^{-j\beta_2 x} \hat{y}$

 $\widetilde{H}_t(x) = \frac{E_0}{n_2} \tau e^{-\alpha_2 x} e^{-j\beta_2 x} \hat{z}$

Coefficients

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$

 $\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$

1. What if $\eta_1 = \eta_2$?

2. What if $\eta_2 = 0$?

Standing Waves (dielectric to PEC)

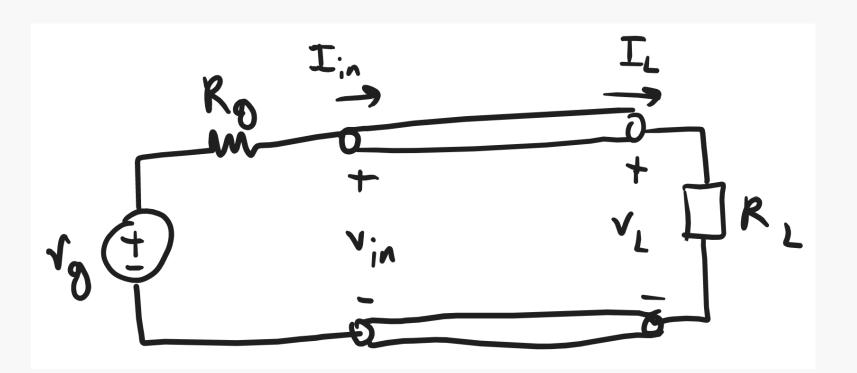
$$\tilde{E}_i(y) = -E_0 e^{-j\beta_1 y} \hat{x}$$

$$\tilde{E}_r(y) = E_0 e^{j\beta_1 y} \hat{x}$$

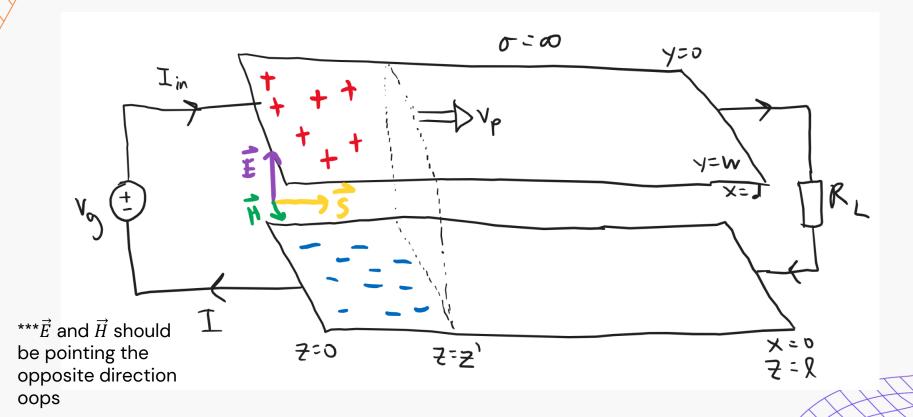
Transmission Lines!

Why do we care?

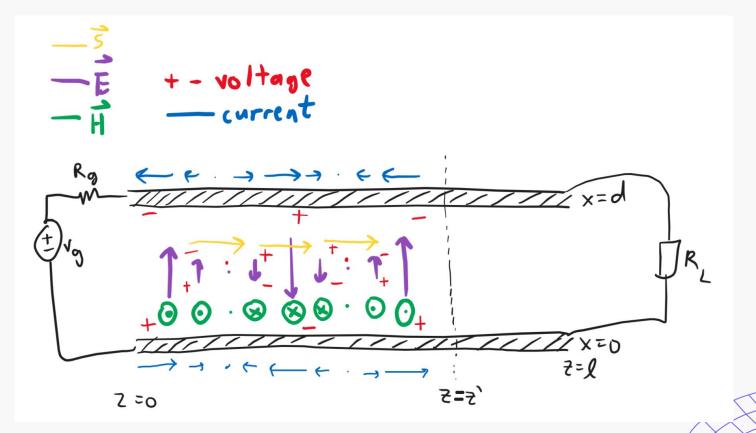
Transmission Line



Transmission Line: Parallel Plate Version



Transmission Line: Parallel Plate Version



+ - voltage In Assette -> current Coax **Version:** 7:0

Basic TL: Time Domain, Not Steady State

Generator injection coefficient: $\tau_g = \frac{Z_0}{R_g + Z_0} \neq 1 + \Gamma_g$ Load reflection coefficient: $\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$ Generator reflection coefficient: $\Gamma_g = \frac{R_g - Z_0}{R_g + Z_0}$

Basic TL: Time Domain, Not Steady State

Special cases:

- What if $Z_L = 0$?
- What if $Z_L = \infty$?
- What if $Z_L = Z_0$?

Input: $V_g = 50\delta(t)$ [V] $Z_L = 25\Omega, R_g = 50\Omega, Z_0 = 100\Omega$ $v = \frac{2}{3}c$, TL length = 4 [m].

Create a voltage bounce diagram for the first 70ns. Create a current bounce diagram for the first 70ns. Plot V(1m, t) for the first 7us.

Input: $V_g = 50\delta(t)$ [V] $Z_L = 25\Omega$, $R_g = 50\Omega$, $Z_0 = 100\Omega$ $v = \frac{2}{3}c$, TL length = 4 [m].

Step 1: Calculate all the funny symbols

Input: $V_g = 50\delta(t)$ [V] $Z_L = 25\Omega, R_g = 50\Omega, Z_0 = 100\Omega$ $v = \frac{2}{3}c$, TL length = 4 [m].

Step 2: Draw!

Input: $V_g = 50\delta(t)$ [V] $Z_L = 25\Omega, R_g = 50\Omega, Z_0 = 100\Omega$ $v = \frac{2}{3}c$, TL length = 4 [m].

Plot V(1m, t) for the first 70ns.

Input: $V_g = 50u(t)$ [V] $Z_L = 25\Omega$, $R_g = 50\Omega$, $Z_0 = 100\Omega$ $v = \frac{2}{3}c$, TL length = 4 [m].

Plot V(1m, t) for the first 70ns.

Input: $V_g = 50u(t)$ [V] $Z_L = 25\Omega$, $R_g = 50\Omega$, $Z_0 = 100\Omega$ $v = \frac{2}{3}c$, TL length = 4 [m].

What is the steady-state voltage over the load? What is the steady-state current through the load?

Bounce Diagrams: General Formulation

This is an LTI system!

Input: $\delta(t)$

Output (at position d): V(d, t)

Time to travel down the line: t_0 .

$$V(d,t) = \tau_g \sum_{n=0}^{\infty} \left(\Gamma_L \Gamma_g\right)^n \delta(t + \frac{d}{v} - nt_0) + \tau_g \Gamma_L \sum_{n=0}^{\infty} \left(\Gamma_L \Gamma_g\right)^n \delta(t - \frac{d}{v} - (n+1)t_0)$$

$$I(d,t) = \frac{\tau_g}{Z_0} \sum_{n=0}^{\infty} \left(\Gamma_L \Gamma_g\right)^n \delta(t + \frac{d}{v} - nt_0) - \frac{\tau_g \Gamma_L}{Z_0} \sum_{n=0}^{\infty} \left(\Gamma_L \Gamma_g\right)^n \delta(t - \frac{d}{v} - (n+1)t_0)$$

For any general input: convolve!

Exam 1 equations, in one place

kam 1 equations, in one place
$$\epsilon \oiint \vec{E} \cdot d\vec{S} = Q_{\text{anclosed}}$$

$$\epsilon \hat{r}$$
 $\epsilon \oiint E \cdot dS = Q_{ ext{enclosed}}$ $\iff \vec{D} \cdot d\vec{S} = Q_{ ext{enclosed}}$ $\iff \vec{v}_1 \times \vec{B}$ $\iff \rho dV = Q_{ ext{enclosed}}$

$$q_1(\vec{v}_1 imes \vec{B})$$

$$\iiint \rho dV = Q_{\mathsf{enclosed}}$$

$$\oiint \vec{B} \cdot d\vec{S} = 0$$

$$I = \oiint \vec{I} \cdot d\vec{S} = -\frac{\partial Q_{\mathsf{enclosed}}}{\partial Q_{\mathsf{enclosed}}}$$

$$ec{F} = q_1 ec{E} + q_1 (ec{v}_1 imes ec{B})$$

$$ec{E} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r}$$

$$ec{F} = \frac{q_2}{4\pi\epsilon_0 r^2} \hat{r}$$

$$\begin{array}{ll} g D dS = Q_{\mathsf{enclosed}} \\ q_1(\vec{v}_1 \times \vec{B}) & \iiint \rho dV = Q_{\mathsf{enclosed}} \\ \frac{2}{10r^2} \hat{r} & \oiint \vec{J} \cdot d\vec{S} = 0 \\ I = \oiint \vec{J} \cdot d\vec{S} = -\frac{\partial Q_{\mathsf{enclosed}}}{\partial t} \end{array}$$

 $\epsilon = \epsilon_0 (1 + \chi_e)$

 $\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \vec{E}$

 $\vec{P} = \epsilon_0 \chi_e \vec{E}$

 $\rho_b = -\nabla \cdot \vec{P}$

 $\nabla \cdot \epsilon_0 \vec{E} = \rho_f + \rho_b$

 $\vec{I} = \sigma \vec{E}$

 $\hat{n} \cdot (\vec{D}_1 - \vec{D}_2) = \rho_s$

 $\hat{n} \times \left(\vec{E}_1 - \vec{E}_2\right) = 0$

 $\hat{n} \cdot (\vec{P}_1 - \vec{P}_2) = -\rho_{b,s}$

Q = CV

 $G = \frac{\sigma}{\epsilon}C$ $R = \frac{1}{G}$

$$\epsilon \oiint \vec{E} \cdot d\vec{S} = Q_{ ext{enclosed}}$$
 $f(\vec{r}) \lor \vec{D} \cdot d\vec{S} = Q_{ ext{enclosed}}$

$$\epsilon \not \oplus \vec{E} \cdot d\vec{S} = Q_{ ext{enclosed}}$$
 $\epsilon \not \oplus \vec{D} \cdot d\vec{S} = Q_{ ext{enclosed}}$

xam 1 equations, in one place
$$\epsilon = \hat{r}$$
 $\epsilon \oiint \vec{E} \cdot d\vec{S} = Q_{\mathsf{enclosed}}$

Exam 1 equations, in one place
$$\vec{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r}$$

$$\epsilon \oiint \vec{E} \cdot d\vec{S} = Q_{\text{enclosed}}$$

$$\epsilon \oiint \vec{D} \cdot d\vec{S} = Q_{\text{enclosed}}$$

 $\nabla \cdot \vec{D} = \rho$

 $\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$

 $-\nabla^2 V = \frac{\rho}{}$

 $\nabla \cdot \vec{B} = 0$

$$\vec{E} = -\nabla V$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

 $\nabla \times \vec{E} = 0$

$$d\vec{l}=0$$

$$V_{ab} = V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

$$-V(a) = -\int_{a}$$

$$\oiint \vec{D} \cdot d\vec{S} = \iiint \nabla \cdot \vec{D} dV$$

$$\oint \vec{E} \cdot d\vec{l} = \iint (\nabla \times \vec{E}) \cdot d\vec{S}$$

$$\begin{array}{l}
b \ E \cdot dl = \iint \left(\nabla \times E \right) \\
\nabla V \cdot d\vec{l} = V(b) - V(b)
\end{array}$$

$$\int_{a}^{b} \nabla V \cdot d\vec{l} = V(b) - V(a)$$

$$dl = V(b)$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{E} = -\frac{\partial B}{\partial t}$$

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

Exam 2 equations, in one place

$$\vec{B} = \frac{\mu I}{2\pi r} \hat{\phi} \qquad \Psi = \iint_{S} \vec{B} \cdot d\vec{S} \qquad v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu \epsilon}}$$

$$d\vec{B} = \frac{\mu I d\vec{\ell} \times \hat{r}}{4\pi r^{2}} \qquad -\frac{d}{dt} \iint_{S} \vec{B} \cdot d\vec{S} = \oint_{c} \vec{E} \cdot d\vec{l} \qquad \omega = 2\pi f = \frac{2\pi}{T}$$

$$\oint_{C} \vec{H} \cdot d\vec{\ell} = \iint_{S} \vec{J} \cdot d\vec{S} \qquad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \eta = \frac{\sqrt{\mu}}{\sqrt{\epsilon}}$$

$$\oint_{C} \vec{B} \cdot d\vec{\ell} = \mu I_{\text{encl}} \qquad \oint_{C} \vec{E} \cdot d\vec{l} = \varepsilon \qquad \nabla^{2} \vec{E} = \mu \epsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}$$

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \qquad \varepsilon = \frac{W}{q} = \oint_{C} \frac{\vec{F}}{q} \cdot d\vec{l}$$

$$\nabla \cdot \vec{B} = 0 \qquad \Psi = LI$$

$$\varepsilon = IR$$

$$\Psi = \iint_{S} \vec{B} \cdot d\vec{S} \qquad v = \frac{\omega}{\beta} = \lambda f = \frac{1}{\sqrt{\mu \epsilon}} \qquad \vec{J}_{b} = \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$$

$$-\frac{d}{dt} \iint_{S} \vec{B} \cdot d\vec{S} = \oint_{c} \vec{E} \cdot d\vec{l} \qquad \omega = 2\pi f = \frac{2\pi}{T} \qquad \vec{H} = \frac{\vec{B}}{\mu_{0}} - \vec{M}$$

$$\vec{M} = \chi_{m} \vec{H}$$

$$\omega = 2\pi J = \frac{1}{T}$$

$$\eta = \frac{\sqrt{\mu}}{\sqrt{\epsilon}}$$

$$\beta = \omega \sqrt{\mu \epsilon}$$

$$\mu_0$$

$$\vec{M} = \chi_m \vec{H}$$

$$\vec{B} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$$

$$\nabla^{2}\vec{E} = \mu\epsilon \frac{\partial^{2}\vec{E}}{\partial t^{2}} \qquad \hat{n} \cdot (\vec{B}_{1} - \vec{B}_{2}) = 0$$
$$\hat{n} \times (\vec{H}_{1} - \vec{H}_{2}) = \vec{J}_{s}$$
$$\hat{n} \times (\vec{M}_{1} - \vec{M}_{2}) = \vec{J}_{b,s}$$

Exam 3 equations, in one place

Waves:

			-				-		
		Condition	β	α	$ \eta $	au	$\lambda = \frac{2\pi}{\beta}$	$\delta = \frac{1}{\alpha}$	
	Perfect dielectric	$\sigma = 0$	$\omega\sqrt{\epsilon\mu}$	0	$\sqrt{\frac{\mu}{\epsilon}}$	0	$\frac{2\pi}{\omega\sqrt{\epsilon\mu}}$	∞	
•	Imperfect dielectric	$\frac{\sigma}{\omega\epsilon} \ll 1$	$\sim \omega \sqrt{\epsilon \mu}$	$\beta \frac{1}{2} \frac{\sigma}{\omega \epsilon} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$	$\sim \sqrt{rac{\mu}{\epsilon}}$	$\sim \frac{\sigma}{2\omega\epsilon}$	$\sim \frac{2\pi}{\omega\sqrt{\epsilon\mu}}$	$\frac{2}{\sigma}\sqrt{\frac{\epsilon}{\mu}}$	
	Good	$\frac{\sigma}{\omega\epsilon} \gg 1$	$\sim \sqrt{\pi f \mu \sigma}$	$\sim \sqrt{\pi f \mu \sigma}$	$\sqrt{\frac{\omega\mu}{\sigma}}$	45°	$\sim \frac{2\pi}{\sqrt{\pi f \mu \sigma}}$	$\sim \frac{1}{\sqrt{\pi f u \sigma}}$	

 ∞

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} \qquad \tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 1 + \Gamma$$

$$v = \frac{\omega}{\beta} = \lambda f$$

 $\nabla^2 \tilde{E} = (j\omega\mu)(\sigma + j\omega\epsilon)\tilde{E}$

$$au_L = rac{Z_L - Z_0}{Z_L + Z_0}$$
 $au_g = rac{Z_0}{R_g + Z_0}$

Perfect

conductor

$$\tau_g = \frac{Z_0}{R_g + Z_0}$$

$$\Gamma_g = \frac{R_g - Z_0}{R_g + Z_0}$$

 $\sigma = \infty$

 ∞

$$\gamma = \sqrt{(j\omega\mu)(\sigma + j\omega\epsilon)}$$

$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\epsilon}}$$

()

0

()

$$\gamma \eta = j\omega \mu$$
$$\frac{\gamma}{\eta} = \sigma + j\omega \epsilon$$

$$A\cos(\omega t - \beta x)\hat{z} \longleftrightarrow Ae^{-j\beta x}\hat{z}$$

$$\vec{S} = \vec{E} \times \vec{H}$$

$$\tilde{S} = \tilde{E} \times \tilde{H}^*$$

$$\langle \vec{S} \rangle = \frac{1}{2}\operatorname{Re}\{\tilde{E} \times \tilde{H}^*\}$$

$$\frac{\partial}{\partial t}\left(\frac{1}{2}\epsilon\vec{E}\cdot\vec{E} + \frac{1}{2}\mu\vec{H}\cdot\vec{H}\right) + \nabla\cdot\vec{S} + \vec{J}\cdot\vec{E} = 0$$

$$\{\vec{J}^*\}$$

 $\{\vec{S} + \vec{J} \cdot \vec{E} = 0\}$

Good luck!

