
ECE 329 Homework 4 � Solutions Due: Friday, September 19, 2025, 4:59:00PM

1.

a) Considering the medium in each slab to be homogeneous, we can refer to Laplace's equation,
∇2V = 0. Hence, the potential in each dielectric slab will be written

V (z) =

{
A1z +B1 , 0 < z < d

A2z +B2 , d < z < z0

from which we �nd the electric �eld E as

E(z) = −∇V (z) =

{
−A1 , 0 < z < d

−A2 , d < z < z0

Given that V = 0 at z = 0, we will have B1 = 0. Similarly, since V = Vp at z = z0, we get

Vp = A2zo +B2

The boundary conditions state that the electrostatic potential �eld must be continuous along
the interface between the two dielectrics. Thus, we can write

A2d+B2 = A1d ⇒ A2d+B2 −A1d = 0

for the potential at z = d.
Applying the other boundary condition stating that there must be no change between the normal
components of the displacement vector D within the two dielectrics due to the fact that there
are no mobile free carriers along it, we can write

n̂ · (D1 −D2) = (−ẑ) · (ϵ1(−A1ẑ)− ϵ2(−A2ẑ))
0 = ϵ1A1 − ϵ2A2

Using the last three equations, we �nd

A1 =
ϵ2Vp

z0ϵ1+d(ϵ2−ϵ1)

A2 =
ϵ1Vp

z0ϵ1+d(ϵ2−ϵ1)

B2 =
d(ϵ2−ϵ1)Vp

z0ϵ1+d(ϵ2−ϵ1)
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from which the electric potential can be written as

V (z) =

{
ϵ2Vp

z0ϵ1+d(ϵ2−ϵ1)
z , 0 < z < d

ϵ1Vp

z0ϵ1+d(ϵ2−ϵ1)
z +

d(ϵ2−ϵ1)Vp

z0ϵ1+d(ϵ2−ϵ1)
, d < z < z0

b) The electric �eld inside the dielectrics is given by

E(z) = −∇V (z) =

{
− ϵ2Vp

z0ϵ1+d(ϵ2−ϵ1)
ẑ , 0 < z < d

− ϵ1Vp

z0ϵ1+d(ϵ2−ϵ1)
ẑ , d < z < z0

For 0 < z < d, we have

Vp =
z0ϵ1 + d(ϵ2 − ϵ1)

ϵ2
Ez

Given that z0 = 4d = 2m, ϵ1 = 3ϵ0, ϵ2 = ϵ0 and E(0 < z < d) = −5ẑ, we �nd that

Vp = 25V

c) Given that z0 = 4d = 2m, ϵ1 = 3ϵ0, ϵ2 = ϵ0 and Vp = 25V , we have

E(z) =

{
−5ẑ , 0 < z < d

−15ẑ , d < z < z0

The surface charge density at z = z0 is given by

ρs(z0) = D · n̂|z=z0
= D+

z (z0)−D−
z (z0)

where D+
z (z0) = 0. Therefore, we can write

ρs(z0) = −D−
z (z0) = −ϵ2Ez(z0) = 15ϵ0

C

m2

d) Laplace's equation
∇2V = 0

results from the assumption that the permittivity is constant in space. In our case, however, there
are two dielectrics in the region 0 < z < zo, which implies that the medium is not homogeneous
within this region. Thus, V (z) does not satisfy Laplace's equation at all points in the region (in
fact, in this particular case, the equation is not satis�ed only at z = d).

e) Knowing that C = Q
V where Q = ρsA and V = |E1z| d+ |E2z| (zo − d), we have

C =
Q

V
=

ρsA

|E1z| d+ |E2z| (zo − d)
.

Using Maxwell's boundary conditions, we �nd that ρs = ϵ2 |E2z| = ϵ1 |E1z|. Then, the capaci-
tance can be re-expressed as

C =
A

d
ϵ1

+ z0−d
ϵ2

=
ϵ1ϵ2A

ϵ1zo + (ϵ2 − ϵ1)d
.
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Note: The same result can be obtained by combining the capacitances of each dielectric in
series. Given that

C1 = ϵ1
A

d
and C2 = ϵ2

A

zo − d
,

we obtain

C =
(
C−1
1 + C−1

2

)−1
=

(
d

ϵ1A
+

zo − d

ϵ2A

)−1

=

(
ϵ1zo + (ϵ2 − ϵ1) d

ϵ1ϵ2A

)−1

=
ϵ1ϵ2A

ϵ1zo + (ϵ2 − ϵ1) d
.
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2. The plates at z = 0 and z = 10m are both grounded and have equipotentials, i.e. V = 0. Referring
to the hint, we can show the potential change by the distance as in the below �gure,

where the lines are drawn straight since both media are homogeneous. Hence, applying the Laplace`s
equation, the potential in each slab will be given by

V (z) =

{
1
4V0z , 0 < z < 4m

−V0
6 z + 5

3V0 , 4m < z < 10m.

From E = −∇V , we �nd

E = −∇V =

{
−1

4V0ẑ
V
m , 0 < z < 4m

V0
6 ẑ V

m , 4m < z < 10m.

Making use of the boundary condition for the interface at z = 4m, we write

ẑ ·
(
D+

z=4 −D−
z=4

)
= 8ϵ0

C

m2
,

3ϵ0
Vo

6
−
(
−1

4
ϵ0V0

)
= 8ϵ0

C

m2

from which we �nd Vo = 32
3 ≈ 10.67V. Now, we can apply the same boundary condition to the

interfaces at z = 0 and z = 10m, respectively. Due to the fact that D = 0 for the exterior region, we
write

Dz<4 = ρz=0 ⇒ −1

4
ϵ0V0 = ρz=0

from which we �nd the surface charge density at z = 0 as ρz=0 = −8
3ϵ0

C

m2 . Likewise,

−Dz>4 = ρz=10 ⇒ −3ϵ0
V0

6
= ρz=10

from which we �nd the surface charge density at z = 10m as ρz=10 = −16
3 ϵ0

C

m2 .
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3.

a) In vacuum, the displacement vector is D = ϵoE+P. Thus, the displacement �eld between the
plates is

D = 3ϵoẑ
C

m2
,

from which we obtain the polarization �eld as P = 0 C

m2 .

b) Since D = 0 for z < 0, i.e. D |z=0− the surface charge on the plate at z = 0 is

ρs|z=0 = ẑ · (D |z=0+ −D |z=0− ) = 3ϵo
C

m2
.

c) If the gap is �lled with a dielectric of permittivity ϵ = 81ϵo without changing the surface charge
density then the displacement �eld will remain the same, i.e.,

D = 3ϵo ẑ
C

m2
.

But, the electric �eld is now

E =
1

ϵ
D =

1

27
ẑ
V

m
.

Consequently, the polarization �eld becomes

P = D− ϵoE =
80

27
ϵo ẑ

C

m2
.

d) If the medium in the gap has a �nite conductivity, then it will also have E = 0 in �steady-
state�.Thus, D → 0 and P → 0. Because, the mobile free charges within the medium in the gap
will be pushed and pulled to pile up at the surfaces until the surface charge density generates a
secondary �eld that cancels out the �elds wtihin the medium. In this particular case, the salt
water shorts out the original �eld between the plates.
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4. The solution of the problem will be given region by region.

� The region de�ned by r ≤ a is occupied by a conductor with σ = 106 S/m, therefore, we can
directly write

D = 0
C

m2
, E = 0

V

m
, P = 0

C

m2
.

for this particular region. In steady-state, charges can accumulate only on the surface of con-
ducting materials. Since this material holds a net charge per unit length Q = 2 C

m , the surface
charge density at radius r = a is

ρs|r=a =
Q

Circumference
=

2

2πa
=

1

πa

C

m2
.

� The region de�ned by a < r < b is occupied by a dielectric with ϵ = 10ϵo. Applying Gauss's law∮
D · dS =

∫
V ρdV = Qenc and considering D = Drr̂, we �nd

D.(2πrL) = Qenc = 2× L

D =
2

2πr
r̂ =

1

πr
r̂
C

m2

for a < r < b. Hence, the electric �eld E is

E =
D

ϵ
=

1

10ϵoπr
r̂
V

m
,

from which we can obtain the polarization P as

P = D− ϵoE = (
1

πr
− 1

10πr
)r̂ =

9

10πr
r̂
C

m2
.

� As the region de�ned by b ≤ r ≤ c has the same material properties as region r ≤ a, we can
write

D = 0
C

m2
, E = 0

V

m
, P = 0

C

m2
.

Then, the surface charge density at r = b is given by

ρs|r=b = r̂.(D |r=b+ −D |r=b− ) |r=b

= r̂ ·
(
− 1

πr
r̂

)∣∣∣∣
r=b

= − 1

πb

C

m2
.

� The region de�ned by c ≤ r ≤ d is occupied by a dielectric with ϵ = 2ϵo. Since the net charge
per unit length is 2− 4 = −2 C

m , the surface charge density at radius r = c is

ρs|r=c =
Q

Circumference
= − 2

2πc
= − 1

πc

C

m2
.

Applying Gauss's law
∮
D · dS =

∫
V ρdV = Q and considering D = Drr̂, we �nd

D = − 2

2πr
r̂ = − 1

πr
r̂
C

m2

for c < r < d. Hence, the electric �eld E is

E =
D

ϵ
= − 1

2ϵoπr
r̂
V

m
,

from which we can obtain the polarization P as

P = D− ϵoE = (− 1

πr
+

1

2πr
)r̂ = − 1

2πr
r̂
C

m2
.
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� Region de�ned by r > d is free space. Applying Gauss' law and noting that the total charge per
unit length enclosed is −2 C

m , we get
∮
D · dS = Q = −2×L C

m where dS = r̂2πr. Therefore, we
can write

D = − 1

πr
r̂
C

m2
, E = − 1

πϵ0r
r̂
V

m
, P4 = 0

C

m2
.

Consequently, the surface charge density at r = d is given by

ρs|r=d = r̂.(D |r=d+ −D |r=d− ) |r=d

= 0
C

m2
.

To �nd capacitance per unit length, we use C = Q
V , where V can be found using V (b)− V (a) =

−
∫ b
a E · dr. From previous problems and slides, we know that the �eld between the center con-

ductor and the shield is given by E(r) = r̂Q/L
2πϵrV/m due to Gauss' Law. We can integrate this

�eld to �nd V = V (b)−V (a) = −
∫ b
a

Q/L
2πϵr r̂ · r̂dr, which yields V = Q/L

2πϵ ln(b/a). Substituting this

into C = Q
V , we �nd that C = 2πϵL

ln(b/a)F. Dividing by L, we �nd the capacitance per unit length

to be C = 2πϵ
ln(b/a)F/m.

Finding conductance per unit length, while somewhat similar, is more involved. Assume that the
current in the coaxial cable has the distribution J = r̂ I

AA/m
2,where A = 2πrL (surface area).

We may then proceed by �nding E using Ohm's Law: E = r̂ I
2πrLσdiel

. Finally, we need to inte-

grate the electric �eld between the inner and outer conductors using V (b)− V (a) = −
∫ b
a E · dr.

The resulting integral evaluates to V = I
2πLσdiel

ln(b/a). Therefore, conductance G = 1
R =

I
V = 2πLσdiel

ln(b/a) S. Dividing by L, we �nd the conductance per unit length to be 2πσdiel
ln(b/a)S/m. How-

ever, since we are considering perfect dielectrics for the sake of this problem, σdiel = 0 S/m, so
conductance per unit length is also 0 S/m.
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