ECE 329 Homework 4 — Solutions Due: Friday, September 19, 2025, 4:59:00PM
1.

a) Considering the medium in each slab to be homogeneous, we can refer to Laplace’s equation,
V2V = 0. Hence, the potential in each dielectric slab will be written

Aiz+By , 0<z<d
V(z) =
Asz+ By |, d<z<z
from which we find the electric field E as

A, O0<z<d
—Ay , d<z<z

E(z)=-VV(z) = {

Given that V =0 at z = 0, we will have By = 0. Similarly, since V =V, at z = 29, we get

V}, = A220+BQ

The boundary conditions state that the electrostatic potential field must be continuous along
the interface between the two dielectrics. Thus, we can write

Asd+ By = Aid = Asd+ By — A1d =0

for the potential at z = d.

Applying the other boundary condition stating that there must be no change between the normal
components of the displacement vector D within the two dielectrics due to the fact that there
are no mobile free carriers along it, we can write

- (D1 —D2) = (=2) (e1(—A12) — ea(—A22))
0 = €141 — €24

Using the last three equations, we find

_ e2Vp
A = zoe1+d(ea—er)
_ €1Vp
Ay = zo€1+d(ez—e1)
32 _ d(ea—e1)Vp

zo€1+d(ea—e1)
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from which the electric potential can be written as

eV}
v(z):{ VW(:Q—%)(Z _ 0<z<d
€1 €a—€1
ZOEl+d(6prel)Z + Z061+d(62716)1) d<z<z
b) The electric field inside the dielectrics is given by
eV o
E(Z)Z—VV(Z):{ _Wg’;—enz , 0<z<d
~marde—m? o d<z<2

For 0 < z < d, we have

V}) _ 20€1 + d(62 — El)EZ
€2

Given that zg = 4d = 2m, €1 = 3¢, €2 = ¢ and E(0 < z < d) = —52, we find that

V, =25V

c) Given that zp = 4d = 2m, €; = 3ep, €2 = €9 and V), = 25V, we have

-5z 0 d
E(z):{ 2, 0<z<

—152 |, d<z<z
The surface charge density at z = zg is given by

pS(ZO) - D ’ ﬁ|2:20
= DI (20) = D; (=)

where D} (z0) = 0. Therefore, we can write
- C
pS(Z()) = —Dz (Zg) = —EQEZ<Z()) = 1560 W

d) Laplace’s equation
VIV =0

results from the assumption that the permittivity is constant in space. In our case, however, there
are two dielectrics in the region 0 < z < z,, which implies that the medium is not homogeneous
within this region. Thus, V(z) does not satisfy Laplace’s equation at all points in the region (in
fact, in this particular case, the equation is not satisfied only at z = d).

e) Knowing that C' = % where Q = psA and V = |E1,|d + |E2;| (2, — d), we have

-9 _ psA
Vo |Eild+ [Eaf (20 — d)

Using Maxwell’s boundary conditions, we find that ps = e2|Fa.| = €1 |E1,|. Then, the capaci-
tance can be re-expressed as
A €162A

C= = .
% + 7Z0€gd €120 + (62 - 61)d
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Note: The same result can be obtained by combining the capacitances of each dielectric in
series. Given that

A A
Cl = 615 and CQ = 62@,
we obtain
-1 -1
. -1 -1 i Zo — d B €120 + (62 - 61) d N 61€2A
¢= (Cl +C; ) N <61A + €A > N < €1624 Cezo+ (2 —€)d
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2. The plates at z = 0 and z = 10m are both grounded and have equipotentials, i.e. V' = 0. Referring
to the hint, we can show the potential change by the distance as in the below figure,

1z A

N 4

0 4 10

where the lines are drawn straight since both media are homogeneous. Hence, applying the Laplace's
equation, the potential in each slab will be given by

1
Viz) = 41‘/92 ,0<2z<4m
—Wz43V) ,4dm<z<10m.

From E = —VV, we find

Making use of the boundary condition for the interface at z = 4 m, we write

. _ C
- (D, -D.y) = 8« m2’

Vo 1 C
360@ — (-460%) = 860 E

from which we find V, = 33—2 ~ 10.67V. Now, we can apply the same boundary condition to the
interfaces at z = 0 and z = 10m, respectively. Due to the fact that D = 0 for the exterior region, we
write

1
Dz<4 = Pz=0 = _160‘/0 = Pz=0

from which we find the surface charge density at z =0 as p,—¢ = —%60 % Likewise,

)
—D.>4 = p.—10 = —3606 = p2=10

from which we find the surface charge density at z = 10m as p,—19 = —%60 %
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a) In vacuum, the displacement vector is D = ¢,E + P. Thus, the displacement field between the
plates is

C
D= 3602 o

m
from which we obtain the polarization field as P =0 %

b) Since D =0 for z < 0, i.e. D|,_o- the surface charge on the plate at z = 0 is
5 C
p3|z=0 = Z (D ‘Z:OJr -D ‘Z:O* ) = 36 m2

c) If the gap is filled with a dielectric of permittivity e = 81¢, without changing the surface charge
density then the displacement field will remain the same, i.e.,

C
D= 360 2? —5-
m
But, the electric field is now
1 1
E=-D=—_2 X
€ 27 m
Consequently, the polarization field becomes
80 . C
P:D—EOE: 2776025@.

d) If the medium in the gap has a finite conductivity, then it will also have E = 0 in “steady-
state”. Thus, D — 0 and P — 0. Because, the mobile free charges within the medium in the gap
will be pushed and pulled to pile up at the surfaces until the surface charge density generates a
secondary field that cancels out the fields wtihin the medium. In this particular case, the salt
water shorts out the original field between the plates.
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4. The solution of the problem will be given region by region.

e The region defined by r < a is occupied by a conductor with ¢ = 10°S/m, therefore, we can

directly write
C A% C

m m m
for this particular region. In steady-state, charges can accumulate only on the surface of con-
ducting materials. Since this material holds a net charge per unit length @ = 2 %, the surface
charge density at radius r = a is

ps|r:a -

9] 2 1 ¢

Circumference 2ma  ma m?’

e The region defined by a < r < b is occupied by a dielectric with € = 10¢,. Applying Gauss’s law
$D-dS = [, pdV = Qcnc and considering D = D, we find

D.(277L) = Qene =2 x L

2 1, C
r T m
for a < r < b. Hence, the electric field E is
D 1V
= — = ”” —
€ 10e,mr m’
from which we can obtain the polarization P as
1 1 9 C
P=D-¢E=(—— )= r—.
wr  107r 10mr m?2

e As the region defined by b < r < ¢ has the same material properties as region r < a, we can
write

D=0, E-0Y, pP-0".
m2 m m?2

Then, the surface charge density at r = b is given by
PS‘T:b = 7Q(D ‘r:bJr -D ‘T:b7 ) ’7“=b

. ( 1 A) 1 C
= 7| ——F =
r

T Tmm?
e The region defined by ¢ < r < d is occupied by a dielectric with ¢ = 2¢,. Since the net charge

per unit length is 2 —4 = -2 %, the surface charge density at radius r = c is
= Q 2 1 C
Pslr=c = Circumference  2mc  mcm?’

Applying Gauss’s law § D - dS = [;, pdV = Q and considering D = D,#, we find

B 2. 1. C
27 wr m?
for ¢ < r < d. Hence, the electric field E is
p D__ 1.V
€ 26,7 1
from which we can obtain the polarization P as
1 1 1 C
P=D-¢E=(——+—)f=——7p—.
o ( r * 27T’I“)r or m2

(©) 2025 Victoria Shao. All rights reserved. Redistributing without permission is prohibited.



e Region defined by r > d is free space. Applying Gauss’ law and noting that the total charge per
unit length enclosed is —2 %, weget §D-dS=Q=-2x1L % where dS = 7#27r. Therefore, we
can write

1. C 1
p--+¢ g1V p_0"
mr m2 megr m’ m?

Consequently, the surface charge density at r = d is given by

p8|r:d = TA"(D |7”=d+ -D |7“=d‘ ) ‘T:d
C
- 0=
m2

%, where V can be found using V(b) — V(a) =

— f: E - dr. From previous problems and slides, we know that the field between the center con-

To find capacitance per unit length, we use C' =

ductor and the shield is given by E(r) = p /L V/m due to Gauss’ Law. We can integrate this

2mer

field to find V =V (b) -V (a) = ; g{j 7 - 7dr, which yields V = Q/L = In(b/a). Substituting this
into C' = %, we find that C' = 12(726/L)F Dividing by L, we find the capamtance per unit length
to be C' = ng/ea)F/m

Finding conductance per unit length, while somewhat similar, is more involved. Assume that the
current in the coaxial cable has the distribution J = f%A/mQ,where A = 27rL (surface area).

We may then proceed by finding E using Ohm’s Law: E = fﬁm. Finally, we need to inte-
grate the electric field between the inner and outer conductors using V(b) — V(a) = — f; E - dr.
The resulting integral evaluates to V = 27TL0d In(b/a). Therefore, conductance G = }% =

é = 217; %l?/ﬁfl S. Dividing by L, we find the conductance per unit length to be 2”‘7‘“” S /m. How-

ever, since we are congidering perfect dielectrics for the sake of this problem, O'dlel =0S/m, so
conductance per unit length is also 0 S/m.
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