
ECE 329 Homework 11 � Solutions Due: Friday, November 7, 2025, 4:59:00 PM

1. For a wave propagating in a vacuum in x < 0, we are given an incident electric �eld phasor

Ẽi = (jẑ − ŷ)e−j2πx V

m
.

The wave encounters a boundary at x = 0 with µ = µo and the re�ected phasor is given by

Ẽr = −1

2
(jẑ − ŷ)ej2πx

V

m
.

a) The incident wave is RHCP because ŷ leads ẑ and the wave is propagating in the x̂ direction.

The re�ected wave is therefore LHCP.

b) The frequency can be calculated from f =
vpβ
2π , where β = 2π and vp = c in a vacuum. Thus,

f = 300MHz.

c) The permittivity of the dielectric can be calculated using the re�ection coe�cient, Γ.

Γ =
η2 − η1
η2 + η1

= −1

2

η =
1

3
η0

ϵr = 9

ϵ = 9ϵo

d) The transmitted electric phasor can be derived from the incident electric phasor with updated

β and τ . So, 1+Γ = τ = 1
2 and β = 2πf

vp
= 6π×108

3×108/
√
9
= 6π and therefore Ẽt =

1
2(jẑ− ŷ)e−j6πx V

m .

e) The ratio of time-averaged incident power to time-averaged transmitted power can be found

using the conservation of energy: η0
η τ

2 = 1− Γ2 = 75%. The proof is presented below.

The magnetic �elds in both the regions are given as,

H̃i =
1
ηo
(−jŷ − ẑ)e−j2πx

H̃r =
Γ
ηo
(−jŷ + ẑ)ej2πx

H̃t =
τ
η (−jŷ − ẑ)e−j6πx

The corresponding time averaged poynting vectors ,

⟨Si⟩ = 1
2Re

{
Ẽi × H̃i

∗}
= 1

ηo
x̂

⟨Sr⟩ = 1
2Re

{
Ẽr × H̃r

∗}
= Γ2

ηo
x̂

⟨St⟩ = 1
2Re

{
Ẽt × H̃t

∗}
= τ2

η x̂

It can be shown that the power density calculated for the incident, re�ected, and transported

waves will satisfy

|⟨Si⟩| = |⟨Sr⟩|+ |⟨St⟩| ,

which shows that the calculations are in compliance with energy conservation principle. Also,

note that
1
ηo

= Γ2

ηo
+ τ2

η
η0
η τ

2 = 1− Γ2
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2. The phasor form of the incident wave is Ẽi = −2je−jβ1zx̂ V
m.

a) The re�ection coe�cient is given by

Γ =
η2 − η1
η2 + η1

= −0.23 and τ = 1 + Γ = 0.77.

Then, the re�ected and transmitted electric �elds are expressed as

Ẽr = −Γ2jejβ1zx̂ = 0.46jejβ1zx̂
V

m

and

Ẽt = −τ2je−jβ2z ŷ = −1.54je−jβ2zx̂
V

m

where β1 = ω
√
ϵoµo =

ω
c and β2 = ω

√
2.56ϵoµo = 1.6ω

c .

b) The associated incident, re�ected, and transmitted magnetic �elds are

H̃i = − 2

η1
je−jβ1z ŷ = − 1

60π
je−jβ1z ŷ

A

m
,

H̃r =
2

η1
Γjejβ1z ŷ = −0.23

60π
jejβ1z ŷ

A

m
,

and

H̃t = − 2

η2
τje−jβ2z ŷ = −1.23

60π
je−jβ2z ŷ

A

m
.

-

c) The time-average Poynting vectors of the incident, re�ected, and transmitted waves are given by

⟨Si⟩ =
1

2
Re

{
Ẽi × H̃i

∗}
=

1

60π
ẑ
W

m2
,

⟨Sr⟩ =
1

2
Re

{
Ẽr × H̃r

∗}
= − 3

3380π
ẑ
W

m2
,

⟨St⟩ =
1

2
Re

{
Ẽt × H̃t

∗}
=

8

507π
ẑ
W

m2
,

respectively. It can be seen that they match energy conservation principle.

d) The re�ectance is de�ned as
∣∣Γ2

∣∣ = |⟨Sr⟩|
|⟨Si⟩| . In order to express it in dB, we write

10 log10
∣∣Γ2

∣∣ = 10 log10 0.23
2 = 10 log10(0.053)

= −12.77 dB.

Therefore, the re�ectance of an interface indicates the ratio of the re�ected and the incident

powers. For this case, the re�ected signal level is 12.77 dB below the incident signal level, which

is equivalent to 5.3% in power and 23% in amplitude compared to the incident signal.
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3. A plane wave �eld

H(y, t) = x̂5cos(ωt+ βy)
A

m

is propagating in a dielectric in the region y > 0. Here, ϵ = 4ϵ0 and thus η = 1
2η0. At x = 0, there

is a boundary to a perfect conductor where η = 0. Then the re�ection and transmission coe�cients

can be found to be

Γ =
η2 − η1
η2 + η1

=
0− 1

2η0

0 + 1
2η0

= −1 and τ = 1 + Γ = 0.

a) It can be shown that the incident, re�ected, and transmitted electric �elds are

Ẽi = −ẑ
5η0
2

ejβy
V

m
,

Ẽr = −ẑΓ
5η0
2

e−jβy = ẑ
5η0
2

e−jβy V

m
,

and

Ẽt = ẑτ
5η0
2

ejβPECx = 0
V

m
.

b) The associated incident, re�ected, and transmitted magnetic �elds are

H̃i = x̂5ejβy
A

m
,

H̃r = x̂5e−jβy A

m
,

and

H̃t = 0
A

m
.

c) The vector current density on the surface of the PEC is found using boundary conditions:

J(t) = n̂× (H+ −H−)

= n̂× (0− (Hi|x=0 +Hr|x=0))

= −ŷ ×−(x̂5cos(ωt) + x̂5cos(ωt))

= −10cos(ωt)ẑ
A

m
.

4.

a) The geometrical factor of the RG-59 coax cable is given by

GF =
2π

ln
(
0.056
0.016

) = 5.015,

from which we obtain

L =
µo

GF
=

4π × 10−7

2π/ ln(3.5)
= 250.6

nH

m
,

C = ϵoGF ≈ 10−9

36π

2π

ln(3.5)
= 44.3

pF

m
,

Zo =

√
L
C

=
1

GF

√
µo

ϵo
≈ ln(3.5)

2π
120π = 75.17Ω,

v =
1

√
ϵoµo

= c ≈ 3× 108
m

s
.
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b) The geometrical factor of the RG-58 coax cable will not change since RG-58 has the same inner

and outer conductor diameters. On the other hand, the inductance, capacitance, characteristic

impedance, and the propagation velocity will be

L =
µo

GF
=

4π × 10−7

2π/ ln(3.5)
= 2.506× 10−7 H

m
= 250.6

nH

m
,

C = 2.25ϵoGF ≈ 2.25× 10−9

36π

2π

ln(3.5)
= 99.8

pF

m
,

Zo =
1

GF

√
µo

2.25ϵo
≈ ln(3.5)

2π

120π√
2.25

= 50.11Ω,

v =
1√

2.25ϵoµo
=

2

3
c ≈ 2× 108

m

s
.

due to the change in the permittivity of the dielectric �lling.

5. For twin-lead transmission lines, the geometrical factor is given by

GF =
π

cosh−1
(
D
2a

) .
Since

Zo =

√
L
C

=
1

GF

√
µ

ϵ
=

cosh−1
(
D
2a

)
π

√
µ

ϵ
,

we can can �nd that

D = 2a cosh

(
Zoπ

√
ϵ

µ

)
.

Assuming ϵ = ϵo, µ = µo, and 2a = 1mm, let us calculate D as follows:

a) For Zo = 150Ω,

D = 1× 10−3 cosh

(
150π

120π

)
≈ 1.89× 10−3m = 1.89mm.

b) For Zo = 300Ω,

D = 1× 10−3 cosh

(
300π

120π

)
≈ 6.13× 10−3m = 6.13mm.

c) For Zo = 450Ω,

D = 1× 10−3 cosh

(
450π

120π

)
= 21.27× 10−3m = 21.27mm.
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6. The voltage and current waves V (z, t) and I(z, t) that propagate on a transmission line satisfy the

following set of partial di�erential equations (PDE's)

−∂V

∂z
= L∂I

∂t
, (1)

−∂I

∂z
= C ∂V

∂t
. (2)

Given that V (z, t) = 4 cos(ωt+ βz), we get

∂I

∂t
= − 1

L
∂V

∂z
= 4

β

L
sin(ωt+ βz),

by utilizing (1). Then, after integrating it over time, we get

I = −4
β

ωL
cos(ωt+ βz).

Inserting this result into (2), we get

∂V

∂t
= − 1

C
∂I

∂z
= −4

β2

ωLC
sin(ωt+ βz),

and integrating over time, we �nally obtain

V = 4
β2

ω2LC
cos(ωt+ βz).

This result implies that
β2

ω2LC
= 1, then β = ω

√
LC.

In addition, the expression for the current becomes

I = −4

√
C
L
cos(ωt+ βz).
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